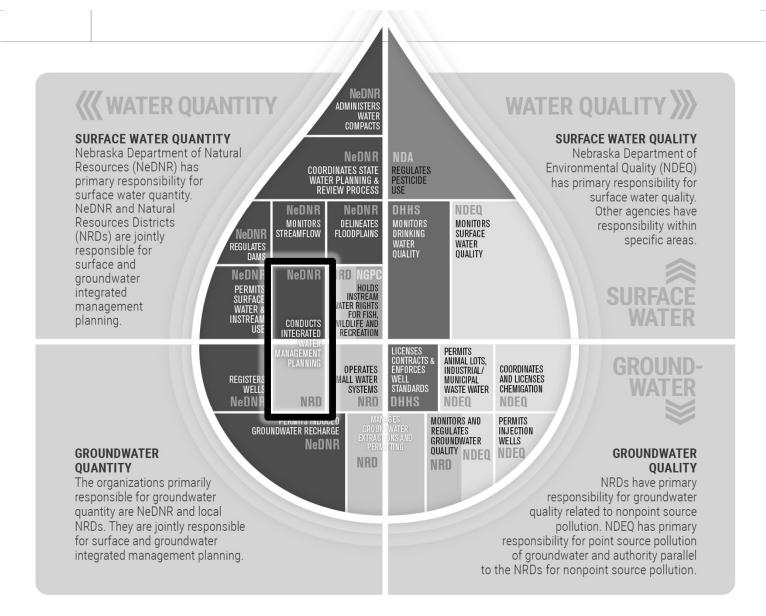
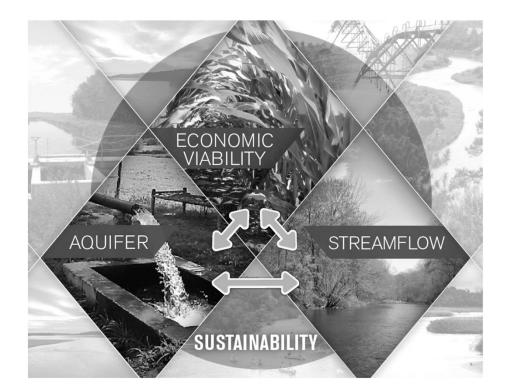
Nebraska's Innovative Approach: Recharging Aquifers through Floodwater Diversions

AWRA Spring Specialty Conference March 25, 2019

Jessie Strom Integrated Water Management Coordinator Shuhai Zheng Engineering Programs & Services Division Head

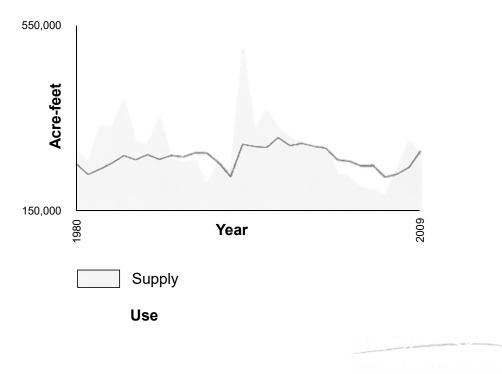

Recharging Aquifers through Excess Surface Water Diversions

- Water Management in Nebraska
- Theory of Conjunctive Water Management
- Application in Nebraska
 - $_{\odot}$ Upper Platte River Basin
- Results and future work


Providing the sound science and support for managing Nebraska's most precious resource

...An integrated management plan shall include... Clear goals and objectives with a purpose of sustaining a *balance* between water uses and water supplies so that the *economic viability, social and environmental health, safety, and welfare* of the river basin, subbasin, or reach can be *achieved and maintained* for both the near term and the long term...

from Neb. Rev. Stat. § 46-715 (2)


Conjunctive Water Management

is an *adaptive* process that utilizes the *connection* between surface water and groundwater to *maximize water use*, while *minimizing impacts* to streamflow and groundwater levels in an effort to increase the overall water supply of a region and improve the *reliability of that supply*.

How is CWM Accomplished

- Use or store surface water when it is plentiful
- Rely more on groundwater when dry
- Change the timing and location of water for more efficient use
- Monitor and evaluate

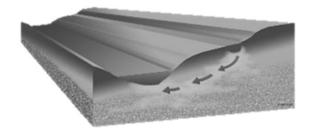
a test sold as followed a test was a

Examples of CWM Projects

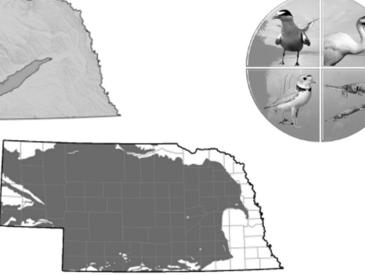
Augmentation projects
Water leasing arrangements
Canal rehabilitation
Capturing excess flows
Broad scale recharge
Slurry wall reservoirs

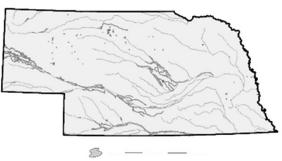
North Dry Creek Streamflow Augmentation Project, TBNRD

Applying Conjunctive Management

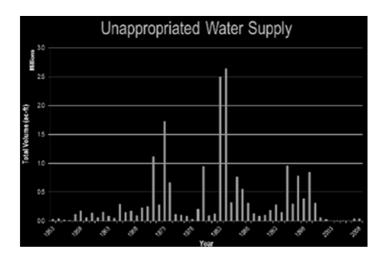

in the Upper Platte River Basin

Upper Platte River


- ➢Inflows from CO and WY
- ≻Fully allocated
 - $_{\odot}$ Offset depletions since 1997, offset any new use
 - o Instream flow needs


Occasionally unappropriated water availableUnderlain by Ogallala Aquifer and alluvial aquifers

>Extensive canal infrastructure



Development of Tools

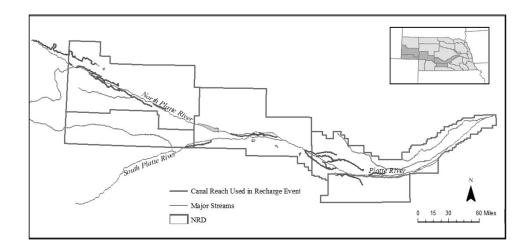
Analysis of unappropriated surface water
 Water leasing contract templates
 Conceptual design standard for a conjunctive management project

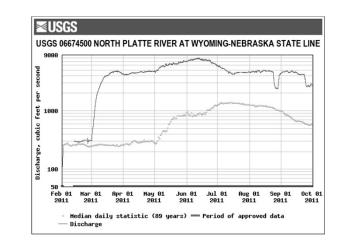
2011 Pilot Project

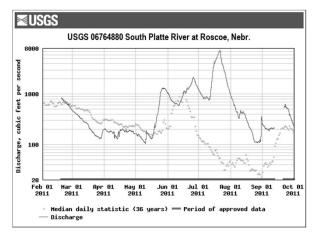
- High flows in spring through fall
 Anticipated due to heavy snowpack
 North Platte, South Platte, Platte
- NeDNR coordinated with NRDs, Irrigation Districts/Canal Companies to divert excesses

≻Process

- Acquisition of permits
- \circ Contracts
- \circ Monitor




2011 Pilot Project

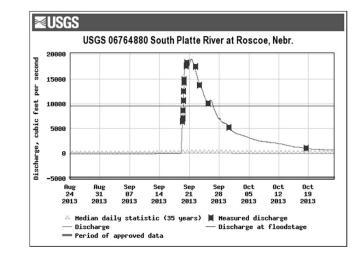

23 Canals and 5 NRDs

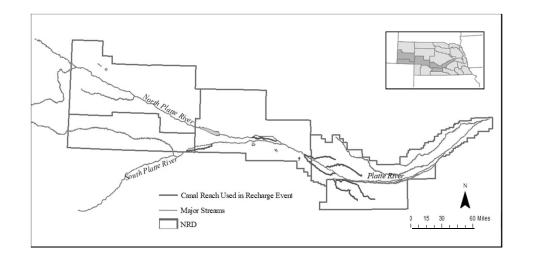
- Diversion Total 145,500 acre-ft
- Recharge Total 96,000 acre-ft

Also helped mitigate flooding impacts in the basin

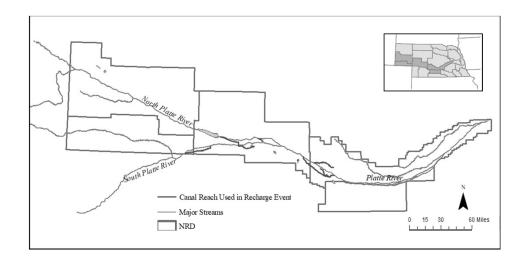
Fall 2013 Flood Flows South Platte river at North Platte, NE

24 hours





Fall 2013 Flood Flows


9 Canals and 4 NRDs Diversion Total 27,300 acre-ft Recharge Total 21,800 acre-ft

Additional Recharge Diversions

Canal Name	Total Diversion (AF) 2016	Total Diversion (AF) 2017	Total Diversion (AF) 2018
Western Canal	14826		
North Platte Canal	9246		
Paxton-Hershey Canal	7828		
Suburban Canal	6045		
Phelps Canal	6909	4916	4259
E65 Canal	1368	1665	1393

Diverting Floodwaters for Recharging the Aquifer

Diversion of Fall 2013 Floodwaters

 Bull Dava

 N

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

Estimated 2011 Average Rate of Floodwaters Diverted

Canal Name	Average Rate, cfs, 2011
Western Canal	80
North Platte Canal	60
Paxton-Hersey Canal	27
Suburban Canal	24
Phelps Canal	29
E65 Canal	-
Gothenburg Canal	83
Dawson Canal	52
30-Mile Canal	75
Total	410

Estimated 2013 Average Rate of Floodwaters Diverted

Canal Name	Average Rate, cfs	
Western Canal	59	
North Platte Canal	69	
Paxton-Hersey Canal	35	
Suburban Canal	12	
Phelps Canal	123	
E65 Canal	280	
Gothenburg Canal	46	
Dawson Canal	1,275	
30-Mile Canal	1,797	
Total	3,696	

Estimated 2015 Average Rate of Floodwaters Diverted

Canal Name	Average Rate, cfs, 2015
Western Canal	1015
North Platte Canal	0
Paxton-Hershey Canal	0
Suburban Canal	479
Phelps Canal	29
E65 Canal	20
Gothenburg Canal	0
Dawson Canal	0
30-Mile Canal	70
Total	1,593

Summary of Excess Flow Diversions

- >Over 260,000 af diverted since 2011
- ≻Recharge in excess of 176,000 af
- Accretions will benefit Platte River flows for many years into the future
- ➢Process in place
- Reduces the need for additional regulations
- Creates greater resiliency in future periods

CWM Future Activities

- Expand implementation
- Adapt strategies based on management goals
- Support continued investment in maintaining and enhancing infrastructure
- Sound science and monitoring to support management decisions
- DSS system to maximize excess flow recharge benefits

Lessons Learned

Conjunctive Water Management can be effectively applied in Nebraska
 Lead to a more reliable water supply and supports economic viability.
 Provide benefits in flood risk reduction

Local partners are key

>Monitoring and tracking is an important part of implementation

Questions?

301 Centennial Mall South, 4th Floor PO Box 94676 Lincoln, NE 68509-4676 402-471-2363