NEBRASKA’S WATER MANAGEMENT RESOURCE

Providing the sound science and support for managing Nebraska’s most precious resource.

A Simplified and More Efficient Solution for Stream Depletion Analysis in MODFLOW

Gengxin (Michael) Ou, PhD
Integrated Water Management Specialist
Providing the sound science and support for managing Nebraska’s most precious resource.
Application of a Groundwater Modeling Tool for Managing Hydrologically Connected Area

- The IWM division of NDNR focuses on the management of hydrologically connected groundwater and surface water supplies.
- Understanding the spatial boundaries of fully appropriated areas (i.e., 10-50 area) is one of the research priorities in the field of IWM in Nebraska.
- This delineation helps water managers in different management roles apply focused management strategies to these areas.
Conventional SDA in MODFLOW

- Build the baseline (calibrated) model
- Add new well and rerun the model
- Calculate the SDF term based on the simulation results
- Repeat the iteration at each grid cell for mapping SDF distribution
Issues With the Conventional Method

- Labor intensive to set up the analysis
 - Inputs and outputs
 - SDF calculation
- Prolonged running time
 - 200 rows * 200 columns * 1 layer * 5 minutes = 138 days
- Numerical errors
 - Changes vs. Errors
Efforts at NDNR to Improve the SDA Processes

- **Cycle Well Analysis (CWA) GUI**
 - Automation of input and output processing

- **Cycle Well Analysis Spreadsheet (CWAS)**
 - More flexible specification of model runs
 - Incorporate automatic pumping definition

- **MODFLOW-SDA package (SDA)**
 - Linearization of MODFLOW flow equation
Cycle Well Analysis Software GUI
Cycle Well Analysis Spreadsheet

The Cycle Well Analysis Spreadsheet contains data related to well analysis, including columns labeled `WellID`, `HBase`, and `HScen1` to `HScen5`. The spreadsheet also includes additional columns such as `Pump` and `zones`.

Table Preview

<table>
<thead>
<tr>
<th>WellID</th>
<th>HBase</th>
<th>HScen1</th>
<th>HScen2</th>
<th>HScen3</th>
<th>HScen4</th>
<th>HScen5</th>
<th>Pump</th>
<th>zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>2806</td>
<td>1990.117065</td>
<td>1990.109985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Development of a stream depletion analysis (SDA) package for MODFLOW

Linearization assumptions

A solution will be obtained herein that considers the effects of streambed clogging and partial stream penetration. A definition sketch for this problem is shown in Figure 3. The calculation of this solution will assume that:

- The ratio of vertical to horizontal velocity components is small (the Dupuit approximation).
- The aquifer is of infinite extent and is homogeneous and isotropic in all horizontal directions.
- Drawdowns are small enough compared with saturated aquifer thicknesses to allow the governing equations to be linearized.
- The streambed cross section has horizontal and vertical dimensions that are small compared to the saturated aquifer thickness, and the stream extends from \(y = -\infty \) to \(y = \infty \) along \(x = 0 \).
- The well flow rate, \(Q_w \), is constant for \(0 < t < \infty \).
- Changes in water surface elevation in the river created by pumping are small compared with changes created in the water table elevation on the aquifer side of the semipervious layer.
- Seepage flow rates from the river into the aquifer are linearly proportional to the change in piezometric head across the semipervious layer.
Theory of MODFLOW-SDA

- For baseline model
 - $AH = F$
- For scenario model
 - $A'H' = F'$
- Assuming $A' \approx A$
- Thus
 - $A(H' - H) = (F' - F)$
 - $A\Delta H = \Delta F$
Flowchart of MODFLOW-SDA
Results – COHYST model

![Graph showing flow rate over time for Birdwood, comparing Con and New models.](image-url)
Constant pumping at different distance
Changing pumping pattern at different distance
Running time

- Speedup: 20 times faster
 - MODFLOW: 6 minutes
 - MODFLOW-SDA: 20 seconds
- CPU time distribution
Future development of SDA

- Support other MODFLOW versions
 - OHWM – NWT, FMP, UZF, MNW
- Parallelism
 - JUPITER API
- Integration with GWM
Software availability

- Software available upon request
- Future updates:
 - michael.ou@nebraska.gov
NEBRASKA’S WATER MANAGEMENT RESOURCE

Providing the sound science and support for managing Nebraska’s most precious resource.

Gengxin (Michael) Ou, PhD
Integrated Water Management Specialist

Nebraska Department of Natural Resources
402-471-2363
dnr.nebraska.gov