

HDR Engineering, Inc. 8404 Indian Hills Drive

Omaha, NE 68114-4098

Phone (402) 399-1000
Fax (402) 399-1111
www.hdrinc.com

Page 1 of 7

 Memo
To: Jesse Bradley, Nebraska DNR Integrated Water Management Division Head

Brandi Flyr, Nebraska DNR Integrated Water Management Coordinator

From: HDR Project Team Project: Depletion Estimates for the Lower Platte
River Basin

CC:

Date: December 2013 Job No:

I. Introduction
HDR provided technical support to the Department by computing surface water depletions from groundwater
irrigation pumping within the hydrologically connected area for the Lower Platte River basin. This memo is
intended to provide a brief description of raw and prepared datasets used in the analyses, a description of the
GIS Python programming script used in the preparation of depletion estimates, and post-processing of results.

II. Raw Datasets
The following raw datasets were utilized in this analysis:

National Hydrography Datasets (NHD)
The NHD datasets for the Lower Platte River basin area was obtained from http://nhd.usgs.gov. Subset of
NHDFlowline dataset queried; FTYPE= StreamRiver AND FCODE = 46006 OR FCODE = 46007 OR
FCODE=55800.

During the analysis, it was discovered that portions of the main stem streams of the Platte River, Elkhorn
River, and Maple Creek were listed in the NHD dataset as ‘artificial path’ rather than ‘perennial stream’.
Thus, the NHD subset used in this analysis was expanded to include both ‘perennial stream’ and ‘artificial
path’.

Transmissivity Data
The basin hydrographic datasets from the 2013 HDR report, “Hydrogeologic Assessment for Potential
Development of Groundwater Modeling Tools in the Lower Platte River and Missouri River Tributary
Basins” were sourced for data. This report is available from the DNR website at the following address:
http://www.dnr.state.ne.us/Publications_Studies/LowerPlatte_MoTribsAssessment.pdf . Supporting electronic
files are available upon request from the Department.

Specific Yield Data
The Specific Yield (SY) dataset was provided by Les Howard of University of Nebraska-Lincoln (UNL)
Conservation and Survey Division in the form of a vector line GIS shapefile. The raw dataset provided SY
values in the form of % values.

Principal Aquifer/Hydrologically Connected Area
The principal aquifer definition was used to approximate the hydrologically connected area. The definition of
the principal aquifer was obtained from the Department and was based upon the 2005 Conservation and
Survey Division’s Mapping of Aquifer Properties-Transmissivity and Specific Yield- for Selected River Basins
in Central and Eastern Nebraska.

HDR Engineering, Inc. 8404 Indian Hills Drive

Omaha, NE 68114-4098

Phone (402) 399-1000
Fax (402) 399-1111
www.hdrinc.com

Page 2 of 7

III. Prepared Datasets
Historic Pumping Estimates
Historic pumping estimates were provided in the form of a grid file. The computational grid file used in this
analysis is common to that used in the statewide land use coverage and both the computational grid file and
historic pumping estimates are available upon request from the Department. Each grid cell has a unique cell
ID number. Text files containing pumping estimates by year (from 1950 to 2012) by cell ID number were
provided with the grid file. These text files were joined to the shapefile in GIS.

Development of Grid Cell Centroid Shapefile
Points were assigned to represent each grid cell and were placed at the center of each grid using the Feature to
Point tool. This is referred to as the grid cell centroid shapefile and provides a single spatial reference point
for the grid cell for use in the computations.

arcpy.FeatureToPoint_management("Grid Index Layer", "output feature class", "CENTROID")

Specific Yield, Transmissivity, and Near Distance
Attributes including SY, Trans, and NEAR_DIST were added to the grid cell centroid shapefile.

- A conversion was included in the script to convert the specific yield values to decimal format for
use in the depletion calculations. In order to assign the specific yield value to the representative
grid cell, a spatial join was performed that connected the value from the specific yield dataset
described above to the grid centroid shapefile.

- Transmissivity data from the HDR Transmissivity raster were added to the grid cell centroid well
file using the Extract Values to Points tool that requires the Spatial Analyst extension to run.

arcpy.gp.ExtractValuesToPoints_sa("hypothetical wells", "Transmissivity raster", "output
feature class NONE","VALUE_ONLY")

- Near distance added using the perennial stream data sourced from the NHD database using the

Near Analyst tool. This tool requires ArcGIS for Desktop Advanced to run.

arcpy.Near_analysis("Hypothetical Wells”, “perennial streams”, "#","NO_LOCATION","NO_ANGLE")

IV. Python Script Description

A Python script file was written to perform the computations with an annotated description of the script
provided below. The full Python script is included in Section VI of this document.

Annotated Script Overview
1. The python script extracts the parameters from the historic pumping estimate file.
inFC = arcpy.GetParameterAsText(0)

2. It then adds the following fields to the attribute table (feature class) which will be populated during the run:

try:
 arcpy.AddField_management(inFC, "SDF", "Double", "20", "8")
 arcpy.AddField_management(inFC, "Dimen", "Double", "20", "8")
 arcpy.AddField_management(inFC, "yrOnline", "Double", "20", "8")
 arcpy.AddField_management(inFC, "yrOffline", "Double", "20", "8")
 arcpy.AddField_management(inFC, "sumPump", "Double", "20", "8")
 arcpy.AddField_management(inFC, "CumDepTotal", "Double", "20", "8")

HDR Engineering, Inc. 8404 Indian Hills Drive

Omaha, NE 68114-4098

Phone (402) 399-1000
Fax (402) 399-1111
www.hdrinc.com

Page 3 of 7

3. The script ensures there are no null values in the attribute table.
 arcpy.CalculateField_management(inFC, "SDF", 0)

4. The script is set up to display an error message if there is an error when adding any of the above fields.
except:
 print arcpy.GetMessages(2)

5. The script places all grid rows into an update cursor.
cur = arcpy.UpdateCursor(inFC)

6. The script grabs the first row in the dataset.

row = cur.next()

7. At the beginning of each loop, the script sets pumping, online and offline values to 0 so that previous
values are removed.

while row:
 PumpTotal = 0
 online = 0
 offline = 0

The script is set up to calculate values to “"SDF", "CumPump" and "CumDep" fields based on the Jenkins
Method.

8. The script looks at values for Specific Yield. If any values are less than 0, it will replace these with the
value of ‘0.15’.
 if row.SY < 0:
 row.SY = .15

9. The script looks at values for Transmissivity. If any values are less than 0, it will replace those with ‘5000’.
 if row.Trans <=0:
 row.Trans = 5000

SDF
10. The SDF field is calculated using the following equation.
 SDF = (“Distance Nearest Perennial Stream”)^2 * “specific yield”/ “Transmissivity”

 if row.SDF == 0:
 SDF = pow(row.Near_Dist,2) * row.SY / (row.Trans)
 else:
 SDF = row.SDF

11. The script is set up to run for any time interval specified by the user. For the purpose of this analysis, the
script was run on an annual basis. The script will select the first non-zero year as the “online” year and will
select the user entered end year (entered as one year after the desired end date) as the “offline” year.

 for y in range (Begin Year, End Year + 1):

12. The script will sum the pumping values for the time range for each row during this loop.

CumPumpA = "Ctot" + str(y)
 if row.getValue(CumPumpA) is None:
 continue
 else:
 if online is 0:
 online = y
 offline = y
 else:
 offline = y

HDR Engineering, Inc. 8404 Indian Hills Drive

Omaha, NE 68114-4098

Phone (402) 399-1000
Fax (402) 399-1111
www.hdrinc.com

Page 4 of 7

Dimen (dimenVal)
13. To find the Dimen value, the script evaluates the range for each cell and the associated time period is
defined as the “offline” year less the “online” year times 365 to convert to days.
 Time = (offline - online) * 365

dimenVal = Time / SDF

This value for each cell is then divided by its associated SDF (explained above). If this value is less than .07
then it is set to be ‘0’, if it is greater than 600 it is set to be ‘0.96’.

Fraction (delVal)
14. The Dimen value is then compared to values in the Jenkins table (defined as “key list” in the Python script
and shown below) to find the correct values to use for the linear interpolation.

 if dimenVal < 0.07:
 delVal = 0
 elif dimenVal > 600:
 delVal = 0.96
 else:
 xold = 0.07
 for x1 in keylist:
 if x1 >= dimenVal:
 x2 = x1
 x1 = xold
 break
 xold = x1
 y1 = myDict[x1]
 y2 = myDict[x2]
 # Linear interpolation
 delVal = y1 + (dimenVal - x1)* (y2 - y1)/(x2-x1)

15. The values from Jenkins (Table 1) are passed into the linear interpolation process
myDict =
{0.07:0.001,0.10:0.006,0.15:0.019,0.20:0.037,0.25:0.057,0.30:0.077,0.35:0.097,0.40:0.115,0.45:0.134,
0.50:0.151,0.55:0.167, 0.60:0.182, 0.65:0.197, 0.70:0.211, 0.75:0.224, 0.80:0.236, 0.85:0.248,
0.90:0.259, 0.95:0.27, 1:0.28, 1.1:0.299, 1.2:0.316, 1.3:0.333, 1.4:0.348, 1.5:0.362, 1.6:0.375,
1.7:0.387, 1.8:0.398, 1.9:0.409, 2:0.419, 2.2:0.438, 2.4:0.455, 2.6:0.470, 2.8:0.484, 3:0.497,
3.5:0.525, 4:0.549, 4.5:0.569, 5:0.587, 5.5:0.603, 6:0.616, 7:0.64, 8:0.659, 9:0.676, 10:0.69,
15:0.74, 20:0.772, 30:0.81, 50:0.85, 100:0.892,600:0.955}

keylist = myDict.keys()
keylist.sort()

CumPump
16. The script searches the attribute table of the grid cell centroid well files for the first non-zero pumping
value for each cell ID (row). It assigns the year associated with this first non-zero value as the “online” year.
The user inputs an end year for the range the script is analyzing (user enters Year +1). The script assigns this
end of range as the “offline” year.

 for x in range (Start Year, End Year + 1):
 CumPump = "Ctot" + str(x)
 if row.getValue(CumPump) is None:
 continue
 else:
 PumpTotal = row.getValue(CumPump) + PumpTotal

17. The script then writes the results of the calculation into the attribute table.
 row.SDF = SDF
 # Jenkins dimensionless variable
 row.Dimen = dimenVal
 row.sumPump = PumpTotal
 row.yrOnline = online
 row.yrOffline = offline

HDR Engineering, Inc. 8404 Indian Hills Drive

Omaha, NE 68114-4098

Phone (402) 399-1000
Fax (402) 399-1111
www.hdrinc.com

Page 5 of 7

CumDep
18. The cumulative depletion value is determined by taking the CumPump value times the computed delVal
value. The script writes this value to the attribute table.

 row.CumDepTotal = PumpTotal * delVal

19. The script moves on to the next row in the feature class and repeats the process.
 cur.updateRow(row)
 row = cur.next()

V. Post-Processing of Depletion Estimates
Clip to Hydrologically Connected Area and Trim to Subbasin
Once the estimated depletion were computed for each grid cell, the grid shapefile was then clipped to the
hydrologically connected area and further trimmed to the North Bend, Ashland and Louisville subbasins. The
definition of these subbasins is common to those used in the Fully Appropriated Evaluation Methodology
Development analysis conducted by HDR and is available upon request from the Department. An intersect
tool was used to allocate each grid to its respective subbasin post analysis.

Temporal Distribution
The final step was partitioning the estimated total annual depletions between peak and non-peak seasons.
Typical monthly depletion curves were developed for a set of grid cells of varying distances from the nearest
stream source and the temporal distribution reviewed. Based the review of these temporal distributions, the
estimated total annual depletions were split evenly between peak and non-peak seasons.

VI. Full Python Script

CalculateDepletions.py
Author: Jesse Bradley and Shuhai Zheng
Modified: Amy Sorensen, HDR
Modified Date: October 2013
Version: ArcGIS 10.1 arcpy used in updates
Purpose: Calculate well pumping depletion on river flows using the Jenkins method.
Customize Script for Task Order #2, Task 230, Fully Appropriated Basin (FAB) Evaluation
Input Transmissivity need to be in square feet/day
Inputs: grid cell centroid shapefile
Results: Updated fields SDF(a**2 S/T), DIMEN (t/SDF), Fraction, Depletion.
#--

Import system modules
import arcpy

Set working space
arcpy.env.workspace = "C:\\TEMP"

Allow overwrite an existing file
arcpy.env.overwriteOutput = True

Input wells with the parameters assigned.
inFC = arcpy.GetParameterAsText(0)

Add fields into the input feature class
try:
 # Add necessary fields
 arcpy.AddField_management(inFC, "SDF", "Double", "20", "8")
 arcpy.AddField_management(inFC, "Dimen", "Double", "20", "8")

HDR Engineering, Inc. 8404 Indian Hills Drive

Omaha, NE 68114-4098

Phone (402) 399-1000
Fax (402) 399-1111
www.hdrinc.com

Page 6 of 7

 arcpy.AddField_management(inFC, "yrOnline", "Double", "20", "8")
 arcpy.AddField_management(inFC, "yrOffline", "Double", "20", "8")
 arcpy.AddField_management(inFC, "sumPump", "Double", "20", "8")
 arcpy.AddField_management(inFC, "CumDepTotal", "Double", "20", "8")

 # Calculates so values aren't NULL so SDF math runs later in script
 arcpy.CalculateField_management(inFC, "SDF", 0)

except:
 # If an error occurs when running Addfield, print out the error message.
 print arcpy.GetMessages(2)

Place all well rows into an update cursor
cur = arcpy.UpdateCursor(inFC)

Get the first row
row = cur.next()

the values from Jenkins (Table 1) which are passed into the linear interpolation process
myDict =
{0.07:0.001,0.10:0.006,0.15:0.019,0.20:0.037,0.25:0.057,0.30:0.077,0.35:0.097,0.40:0.115,0.45:
0.134,0.50:0.151,0.55:0.167,

0.60:0.182,0.65:0.197,0.70:0.211,0.75:0.224,0.80:0.236,0.85:0.248,0.90:0.259,0.95:0.27,1:0.28,1.1:0.
299,1.2:0.316,1.3:0.333,

1.4:0.348,1.5:0.362,1.6:0.375,1.7:0.387,1.8:0.398,1.9:0.409,2:0.419,2.2:0.438,2.4:0.455,2.6:0.470,2.
8:0.484,3:0.497,

3.5:0.525,4:0.549,4.5:0.569,5:0.587,5.5:0.603,6:0.616,7:0.64,8:0.659,9:0.676,10:0.69,15:0.74,20:0.77
2,30:0.81,50:0.85,100:0.892,600:0.955}

keylist = myDict.keys()
keylist.sort()

Loop through each row in the input feature class and calculate values to "SDF", "CumPump" and
"CumDep" fields.
while row:
 PumpTotal = 0
 online = 0
 offline = 0

 if row.SY < 0:
 row.SY = .15

 if row.Trans <=0:
 row.Trans = 5000

 if row.SDF == 0:
 SDF = pow(row.Near_Dist,2) * row.SY / (row.Trans)
 else:
 SDF = row.SDF

 # Determine year well went online and year well went offline. For the end year, add +1 to #
the year you'd like the script to end in
 for y in range (1950, 2012):
 CumPumpA = "Ctot" + str(y)
 if row.getValue(CumPumpA) is None:
 continue
 else:
 if online is 0:
 online = y
 offline = y
 else:
 offline = y

 Time = (offline - online) * 365

HDR Engineering, Inc. 8404 Indian Hills Drive

Omaha, NE 68114-4098

Phone (402) 399-1000
Fax (402) 399-1111
www.hdrinc.com

Page 7 of 7

 dimenVal = Time / SDF

 if dimenVal < 0.07:
 delVal = 0
 elif dimenVal > 600:
 delVal = 0.96
 else:
 xold = 0.07
 for x1 in keylist:
 if x1 >= dimenVal:
 x2 = x1
 x1 = xold
 break
 xold = x1
 y1 = myDict[x1]
 y2 = myDict[x2]
 # Linear interpolation
 delVal = y1 + (dimenVal - x1)* (y2 - y1)/(x2-x1)

 # This loop will sum up the pumping values for the calculation for the period selected
 for x in range (1950, 2012):
 CumPump = "Ctot" + str(x)
 if row.getValue(CumPump) is None:
 continue
 else:
 PumpTotal = row.getValue(CumPump) + PumpTotal

 # Write Values to fields
 row.SDF = SDF
 # Jenkins dimensionless variable
 row.Dimen = dimenVal
 row.sumPump = PumpTotal
 row.yrOnline = online
 row.yrOffline = offline

 #Calculate Depletion Total and write to field
 row.CumDepTotal = PumpTotal * delVal

 #Update the row and move on to next well.
 cur.updateRow(row)
 row = cur.next()

Delete variables
del arcpy, cur, row, dimenVal, delVal, PumpTotal, online, offline

print "FINISHED"

