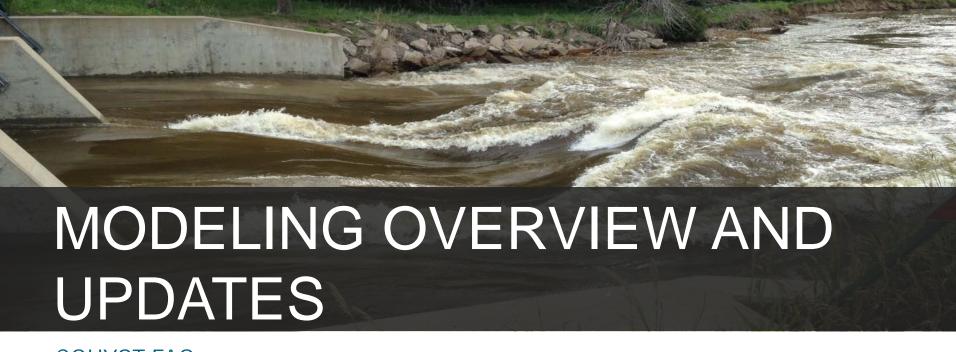


Meeting 2


TODAY'S AGENDA

- Welcome
- Modeling Overview and Updates
 - COHYST FAQ
 - TPNRD CIR
 - Meter Data
 - Updated Robust Review Results
- Further Framework for BWP and IMP
 - Basin-Wide Plan Goals & Objectives (draft)
 - Additional Details on IMP Statutes
- Twin Platte NRD IMP
 - Current Conditions
 - Monitoring and Studies
 - 1st Increment IMP Lessons Learned
- Conjunctive Management
- Next Steps
- Public Comment

WELCOME

- Open Meeting Notice
- Safety & Logistics
- Previous meeting recap

COHYST FAQ
TPNRD CIR
Meter Data
Updated Robust Review results

MODELING OVERVIEW AND UPDATES COHYST FAQ

COHYST FAQ

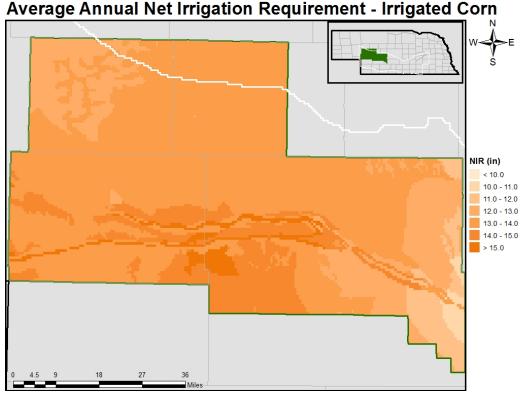
- > 2006 First Report published
 - TPNRD post-1997 depletions estimated at 17,600 af
- > 2008 Second Report published
 - TPNRD post-1997 depletions estimated at 7,500 af
 - Concerns over estimates of recharge led to Robust Review
- > 2018 Third Report published
 - TPNRD post-1997 depletions estimated at 22,500 af
 - Robust Review completed, depletions estimates refined

COHYST FAQ

- > Primary inputs and assumptions of the model:
 - Acres by landuse (irrigated, dryland, pasture)
 - Crop type
 - Daily climate data (precipitation)
 - Climate Repeats 1989-2013 for the years 2014-2063
 - Landuse data repeats after 2013 in the baseline simulation.
 - Surface water and commingled acres remain constant.
 - Groundwater acres reflect annual changes in irrigated acres.

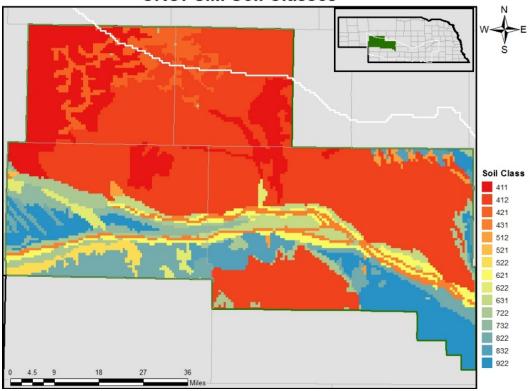
- What data could be improved?
 - Groundwater pumping is derived from:
 - Groundwater-irrigated acres
 - Crop type
 - Crop water needs (changes based on weather)
 - Pumping could instead be measured directly.

COHYST FAQ

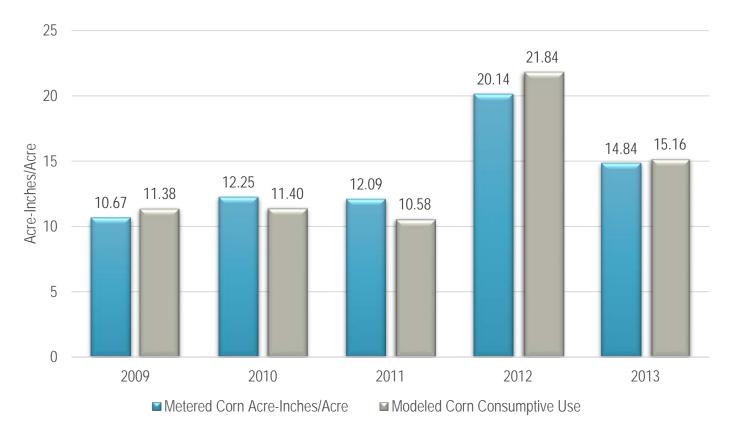

- > Why has the post-1997 depletions estimate increased from ~7,500 acre-feet to ~22,500 acre-feet?
 - A 57,000-acre increase in groundwater-irrigated acres.
 - Recharge in the model has been updated and improved to represent annual variability What data could be improved?
- > How do I know that in the future we will not have another significant change in depletions estimated from the model?
 - In 2008, the report noted concern in how recharge was calculated. Since then, COHYST has
 addressed this concern by improving the model. Similar magnitude concerns are no longer present
 in the model. Future changes would most likely be a result of changes in management actions or a
 change in long-term climate patterns.

MODELING OVERVIEW AND UPDATES TPNRD CIR

TPNRD Avg. Annual Net Irrigation Requirement


Irrigated Corn

Twin Platte Natural Resources District


TPNRD Avg. CROPSIM Soil Classes

Twin Platte Natural Resources District CROPSIM Soil Classes

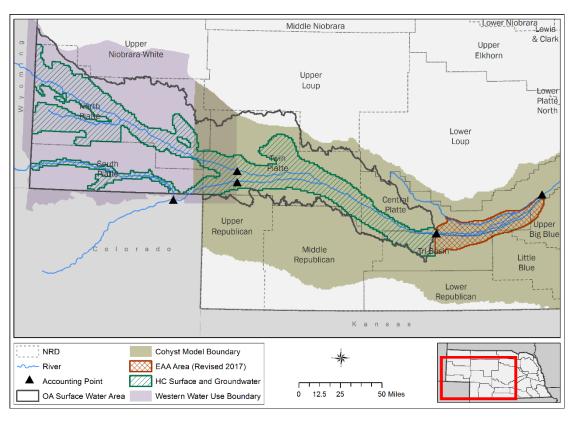
MODELING OVERVIEW AND UPDATES TPNRD METER DATA

NPNRD Corn Only Lands Metered CU vs. Modeled CU

MODELING OVERVIEW AND UPDATES ROBUST REVIEW RESULTS

Updated Robust Review Results for TPNRD

Robust Review Goals

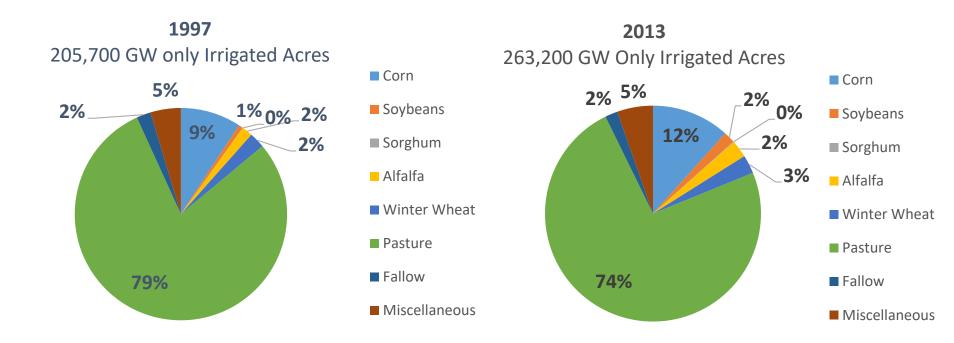

- Complete monitoring activities outlined in the current IMP
- Assess progress on first increment goals and objectives
- Provide for more informed discussion of second increment objectives with the TPNRD IMP stakeholders

Robust Review Model Simulation Setup

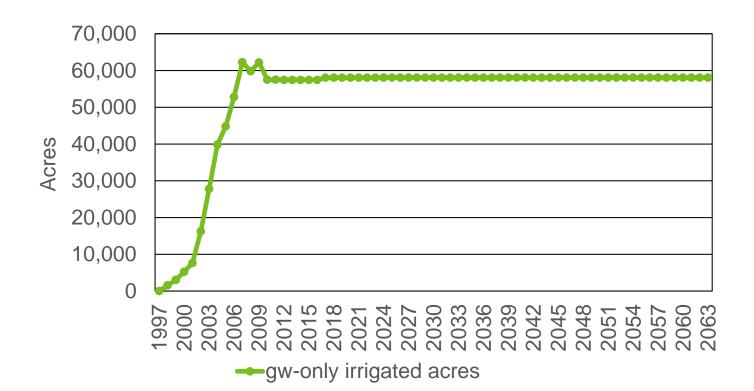
COHYST Area Assumptions

- Used version 28 of the groundwater model and version 29 of the watershed models
- ➤ Models are simulated from 1950 2063
- Climate repeats 1989-2013 twice for 2014-2063
- Historical groundwater irrigated acres and crops are used in the baseline simulation and the 1997 level of groundwater irrigated acres and crops are used in the "1997" simulation
- Surface water and commingled acres remain constant in the baseline and 1997 simulations to cancel out commingled effects
- > Results are summarized for the area upstream of Chapman

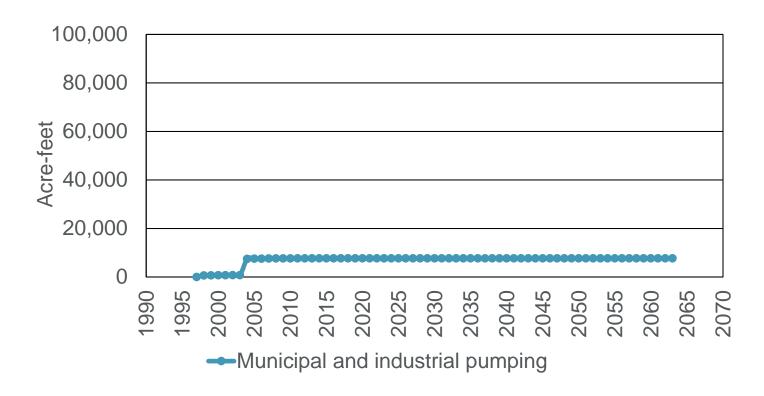
Model Areas


Change in acres

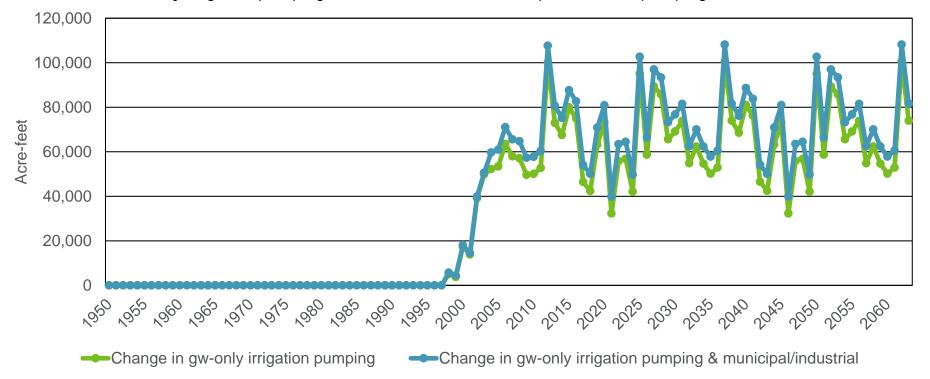
> Change in groundwater-only irrigated acres 1997-2013


TPNRD	Total change (1997 to 2013)	
District-Wide	57,500 acres	

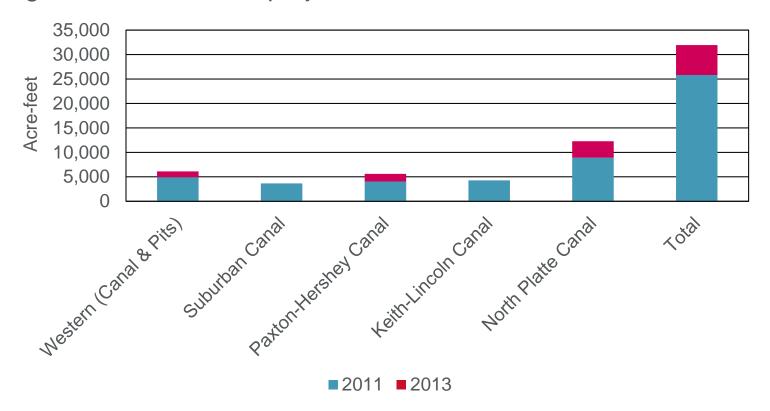
Changes in crop type, District-wide


Change in groundwater-only irrigated acre crop types 1997-2013

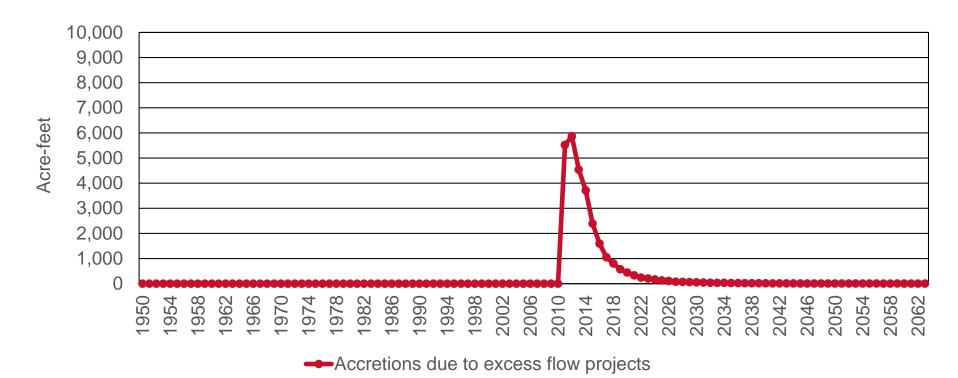
Change in groundwater-only irrigated acres from 1997, District-wide



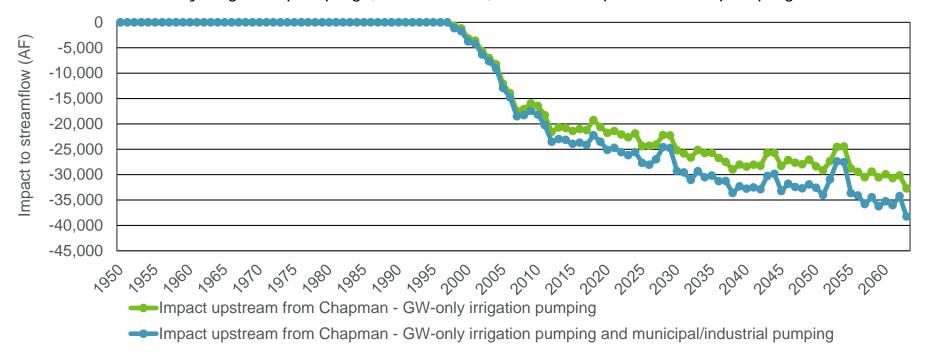
Change in municipal and industrial pumping from 1997, District-wide



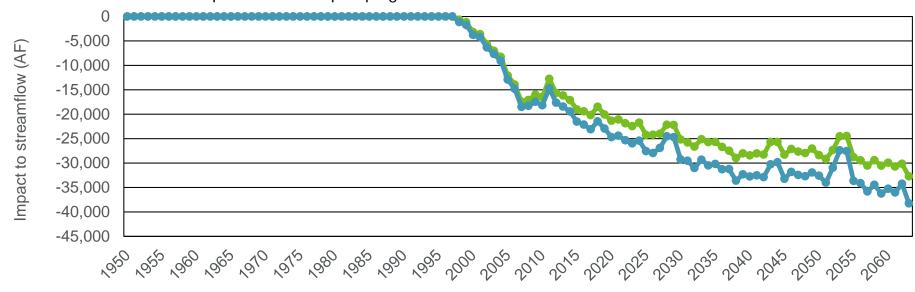
Pumping Changes, District-Wide


> Groundwater-only irrigation pumping (57,500 acres) AND municipal/industrial pumping

Recharge from excess flow projects, 2011-2013



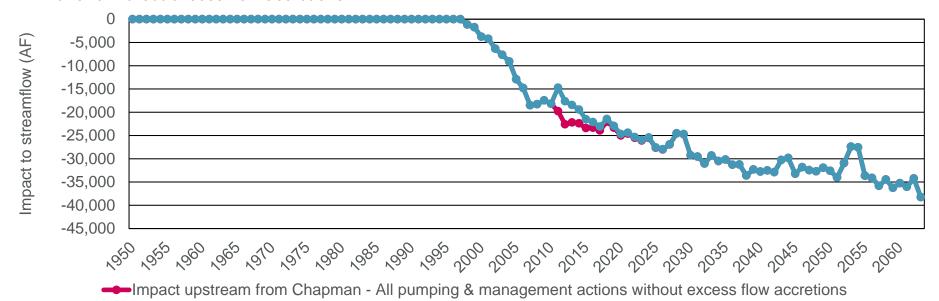
Accretions from excess flow projects, 2011-2013


TPNRD Results

- > Impact upstream from Chapman due to changes in groundwater pumping
- > Groundwater-only irrigation pumping (57,500 acres) AND municipal/industrial pumping

TPNRD Results

- > Impact upstream from Chapman due to total pumping and management actions
- > Includes groundwater-only irrigation pumping, accretions from projects, and retirements.
- > With and without municipal & industrial pumping.


- --- Impact upstream from Chapman All pumping & management actions without municipal/industrial pumping
- --- Impact upstream from Chapman All pumping & management actions

TPNRD Results

- > Impact upstream from Chapman due to total pumping and management actions
- > Includes groundwater-only irrigation pumping, municipal & industrial pumping, and retirements.

Impact upstream from Chapman - All pumping & management actions

> With and without excess flow accretions.

TPNRD Summary

Post-1997 depletions estimates

Year	2019	2029	50-year
Current IMP	6,800		7,000
Updated Estimate	23,000	24,700	38,200
Updated Estimate – w/o M&I	20,100	22,200	32,700

All values in acre-feet/year

Why Are We Here?

- Ground water and surface water controls shall
 - a. Be consistent with the goals and objectives of the plan
 - b. Ensure Nebraska compliance with interstate agreement
 - Protect existing users (groundwater and surface water) from new uses

(STATUTORY REQUIREMENTS § 46-715(4))

Basin-Wide Goals and Objectives (draft) IMP Statutes

FURTHER FRAMEWORK FOR BWP AND IMP BWP GOALS AND OBJECTIVES (DRAFT)

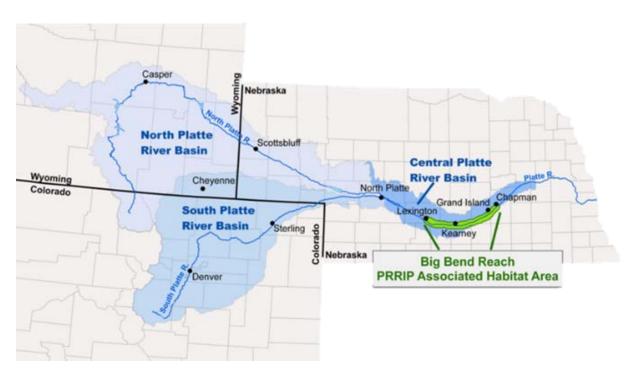
Goals	1: Incrementally achieve and sustain a fully appropriated condition	2: Work to maintain economic viability of the basin while implementing this plan	3: Prevent or mitigate human-induced reductions in the flow of a river or stream that would cause noncompliance with an interstate compact or decree or other formal state contract or agreement.
Objectives	Offset impacts of streamflow depletions to the extent those depletions are due to water use initiated after July 1, 1997	Understand the economic impacts of supply variability on water users	Prevent human-induced streamflow depletions that would cause noncompliance by Nebraska with the Nebraska New Depletions Plan (NDP) included within the Platte River Recovery Implementation Program (Program), for as long as the Program exists.
	Maintain first increment mitigation efforts	Assess short and long-term basin water supply and demand	
	Conduct a technical analysisto determine whether the controls are sufficient	Explore potential measures to mitigate impacts of basin supply variability on surface water and groundwater users	
	Use available funds and actively pursue new funding opportunities toimplement this Plan	Develop a basin drought contingency plan for management of supplies during times of shortage	
	Update and continue implementing IMPs in each Platte River Basin NRD		

	Goals	4: Partner with municipalities and industries to maximize conservation and water use efficiency	5: Work cooperatively to identify and investigate disputes between groundwater users and surface water appropriators and, if determined appropriate, implement management solutions to address such issues.	6: Keep the Upper Platte River Basin- Wide Plan current and keep stakeholders informed.
	Objectives	Continue to collect data on water use and existing conservation plans of municipalities and industries within the Basin	Identify disputes between groundwater users and surface water appropriators.	Meet at least annually to review progress toward achieving the goals and objectives of this Upper Platte River Basin-Wide Plan and those portions of individual NRD IMPs that implement this plan.
		Invite municipalities and industries to the annual meetings	Investigate and address issues between groundwater users and surface water appropriators, based on investigation results.	Gather and evaluate data and information to measure the effectiveness of controls, incentives, and other programs in the individual NRD IMPs used to implement this Upper Platte River Basin-Wide Plan.
		Establish baseline water use levels and reasonable water use levels for each municipal and industrial user by January 1, 2026.		Improve information sharing with interested stakeholders

E. Work appropriatively to identify and

4. Koon the Unner Diette Diver Desin

1. Dortner with municipalities and

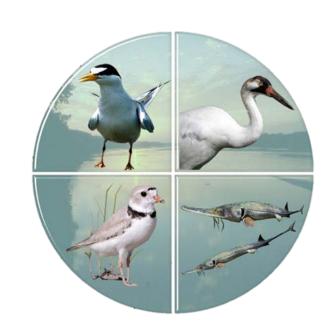

FURTHER FRAMEWORK FOR BWP AND IMP ADDITIONAL DETAILS ON IMP STATUTES

STATUTORY REQUIREMENTS § 46-715(3)

- > Process for economic development opportunities and economic sustainability
- > Clear and transparent procedures to track depletions and gains to streamflow utilizing the best available / generally accepted methods, information, data, and science
- > Procedures the NRD / NeDNR use to report, consult, and otherwise share information
- Identify water available to mitigate new uses (i.e. water rights leases, interference agreements, augmentation projects, conjunctive use management, and use retirement)
- Guidelines for consultation with other water users to provide for economic development opportunities
- > Rules to allow transfers from an old use to a new use, and offsets, as necessary, for new uses that adversely affect existing users. Water banking may also be used when appropriate

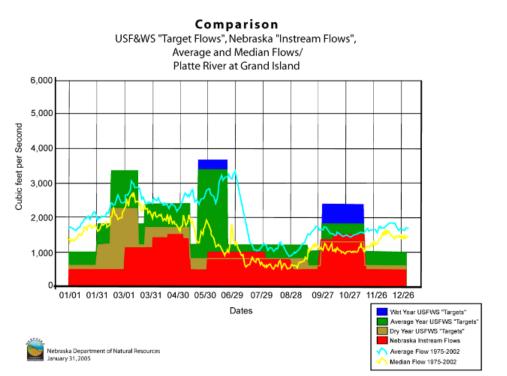
INTERSTATE AGREEMENT – PRRIP

Platte River Recovery Implementation Program; § 46-715(4)(b)



- ➤ Began January 1, 2007
- Basin-wide effort by Department of Interior, Colorado, Wyoming, and Nebraska
- Implementation of PRRIP is incremental.
 - The first increment is 13 years, expected to extend through 2032.

INTERSTATE AGREEMENT – PRRIP


Platte River Recovery Implementation Program; § 46-715(4)(b)

- > Endangered species
 - Improve habitat for four threatened and endangered species
 - Whooping Crane
 - Piping Plover
 - Least Tern
 - Pallid Sturgeon
 - Provide ESA Section 7 and Section 9 coverage for all water users in the basin
 - Avoid use of alternative ESA enforcement measures

INTERSTATE AGREEMENT – PRRIP

Platte River Recovery Implementation Program; § 46-715(4)(b)

- > Target & state-protected flows
 - Reducing deficits to FWS Target Flows by average annual of 130,000 to 150,000 AFY
 - "Pulse" Flows for Adaptive Management

Current Conditions

Monitoring & Studies

1st Increment IMP Lessons Learned

TPNRD CURRENT IMP CURRENT CONDITIONS

GOALS

- ➤ Incrementally achieve and sustain a FA condition
- ➤ Be in compliance by NE with interstate, decree, compact, contract, etc.
- ➤ Maintain consistency with the BWP

OBJECTIVES

- ➤ Within the 1st 10 years implement measures to offset an average 7,700 ac-ft. to the river from 2043-2048
- Conduct tech analysis after 6 years to see if adopted measures are sufficient to offset post-'97 depletions
- ➤ Continue to refine differences between current and FA levels
- ➤ Develop and maintain analytical tools (COHYST, etc.)
- > Review IMP provisions to see if they are adequate

ACTION ITEMS: NON-REGULATORY

- ►I + E Programs
- ➤ Incentive programs
 - EQIP
 - CREP
 - AWEP
- ➤ Other programs

ACTION ITEMS: REGULATORY

- ➤ Annually compare stream depletions to accretions
- ➤ Triggers stair steps
 - If meet triggers, continue as is
 - If do <u>not</u> meet triggers, establish regulations
- **≻**Controls
 - Alternative crops
 - Reduction of acres
 - Allocations

ACTION ITEMS: REGULATORY

Triggers by year (ac-ft)

* 7,700 ac-ft = average annual depletion rate to be offset for period 2043-2048

2009	2010	2011	2012	2013
5,599	5,635	5,756	5,804	5,859

2014	2015	2016	2017	2018	2019
5,862	5,901	5,931	6,024	6,155	6,185

TPNRD CURRENT IMP MONITORING AND STUDIES

This section is to ensure the FA + OA areas within TPNRD reach and maintain FA condition

MONITORING

- >Annually tracking activities
 - Certify acres
 - Transfer
 - Flow meter readings
 - Well construction permits
 - Variances
 - Retirements
 - Water banking transactions

MONITORING

- ➤ Reporting
 - Evaluate need of a subsequent increment
 - Change in recharge from SW diversion on stream flow
 - Change groundwater irrigation, municipal, industrial, domestic, livestock
 - Change in conservation measures on stream

- Timing and location of net change in streamflow
- Annual reports
- Measure success compare results of annual reports to total depletions
- Robust review of progress
- COHYST runs compare

MONITORING

- >Studies
 - Stream depletions due to groundwater wells & comingled surface water
 - Crop rotation
 - Vegetation management
 - Irrigation scheduling
 - Types of irrigation systems

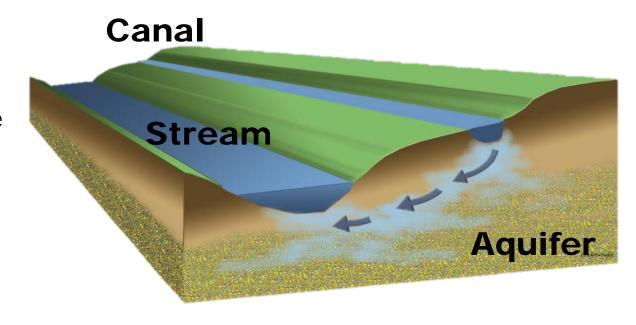
- Tillage practices
- BMP
- Conjunctive management
- Water budget analyses
- Invasive species
- Conservation measures

TPNRD CURRENT IMP LESSONS LEARNED

From the First IMP

Lessons Learned

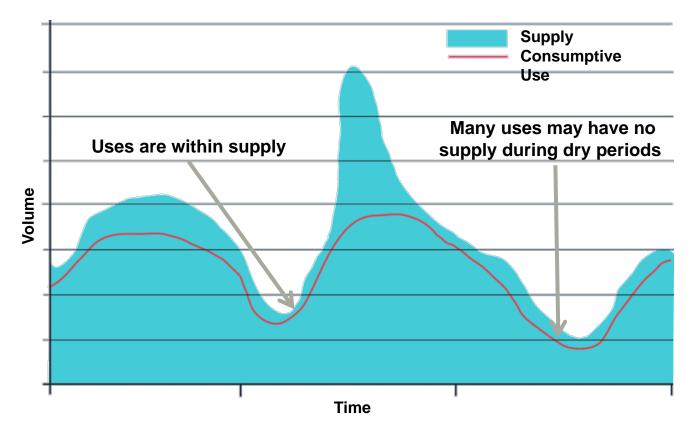
- > Water is expensive and not readily available
 - Sustainability of funding
- > POAC PBC technical and financial management
- > Shortage of water is a Management Problem
- Modeling process and technology updates
 - > Need for better communication
 - Need to improve timeliness of analyses
- Education and outreach efforts need to improve
- > Challenge in identifying fully appropriated (FA) and overappropriated (OA) distinction and defining fully appropriated
- Challenge in finding a water use and supply balance defining possibility and sustainability



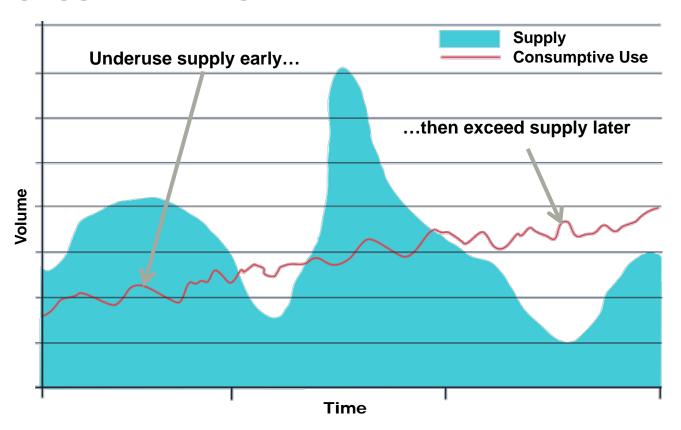
IN THE UPPER PLATTE RIVER BASIN

UNDERLYING CONCEPTS OF CONJUNCTIVE WATER MANAGEMENT

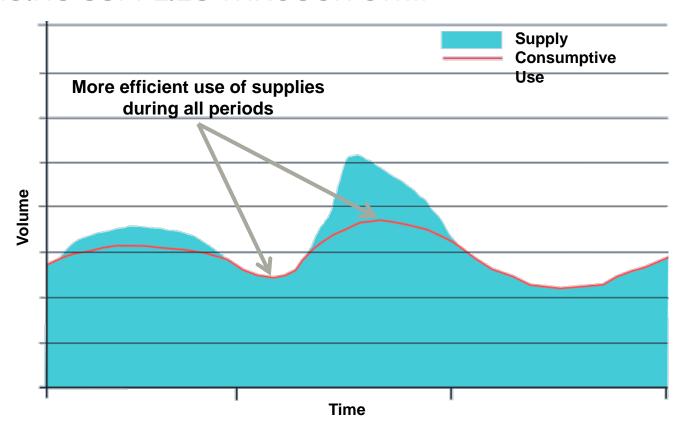
(CWM)


- Surface and groundwater resources are interconnected
- Decisions to improve the management of one cannot be made properly without considering the other

Conjunctive Water Management is an *adaptive process* that utilizes the *connection* between surface water and groundwater to *maximize water use*, while *minimizing impacts* to streamflow and groundwater levels in an effort to increase the overall water supply of a region and improve the reliability of that supply.


SCENARIO 1:

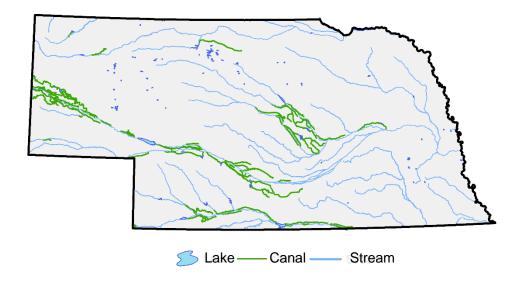
USING SURFACE WATER ONLY


SCENARIO 2:

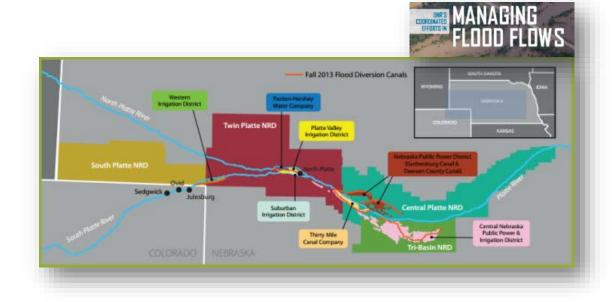
USING GROUNDWATER ONLY

SCENARIO 3:

MANAGING SUPPLIES THROUGH CWM


COMPONENTS OF CWM

- > Surface water diversion and groundwater pumping
- > Aquifer recharge
- > Management of the timing of return flows
- > Program for monitoring and evaluation

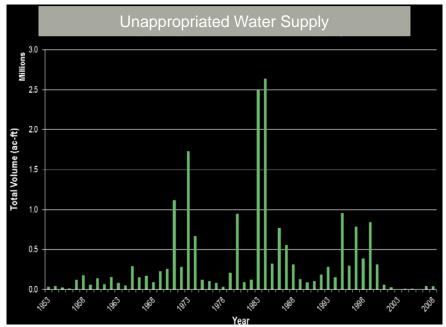

BENEFITS OF CWM

- > Maximize available water supplies
- > Leverage existing infrastructure
- > Use existing planning framework
- > Minimize the need for regulatory actions
- Customize to local opportunities or needs
- > Maintain viability of existing uses

EXAMPLES OF CWM PROJECTS

- Augmentation projects such as N-CORPE
- Western canal conjunctive management study
- > Water leasing arrangements
- CPNRD transfers and canal refurbishment
- Capturing excess flows using existing canal infrastructure (in partnership with irrigation districts)

APPLYING CONJUNCTIVE MANAGEMENT


IN THE UPPER PLATTE RIVER BASIN

First Increment CWM Activities

UPPER PLATTE RIVER WATER SUPPLIES

- Receives average of 1 million ac-ft from snowmelt in Wyoming each year (North Platte Decree)
- More variable inflows in South Platte from Colorado
- Water is generally fully allocated, particularly above Elm Creek (overappropriated)
- Streamflows required to be shared under Endangered Species Act (Federal)
- Unappropriated water does occur during some very wet years, during shorter intervals, and outside of the irrigation season

2011 PILOT PROJECT

➤ High flows in spring prior to irrigation season

➤ NeDNR coordinated with NRDs, Irrigation Districts/Canal Companies to divert excesses

- > Acquisition of permits
- Contracts
- Monitor

2011 PILOT PROJECT

- 23 Canals and 5 NRDs
 - Diversion Total
 - Recharge Total
 - TPNRD Diversion Total
 - TPNRD Recharge Total

142,000 acre-ft

64,000 acre-ft

33,200 acre-ft

25,800 acre-ft

2013 FLOOD FLOWS

Friday, September 20, 2013

Saturday, September 21, 2013

South Platte River Buffalo Bill Road Bridge, North Platte, NE

2013 FLOOD FLOWS

9 Canals and 4 NRDs

Diversion Total

Recharge Total

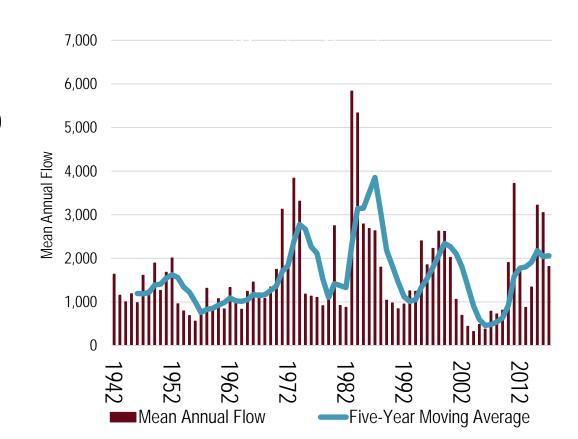
TPNRD Diversion Total

TPNRD Recharge Total

44,000 ac-ft

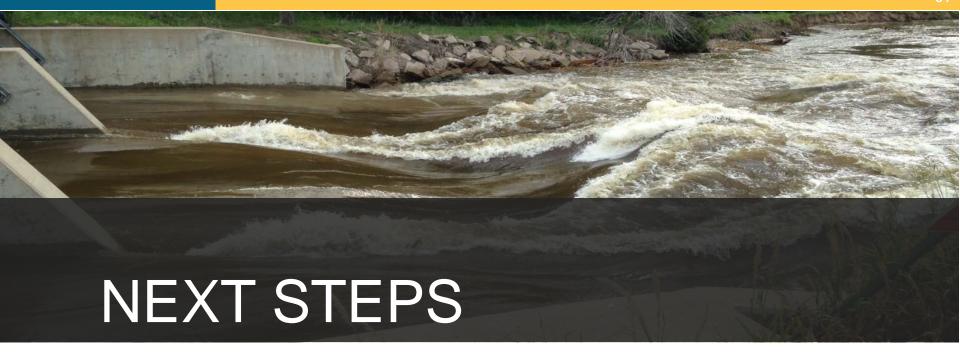
27,000 ac-ft

8,700 ac-ft


6,100 ac-ft

SUMMARY OF FLOOD FLOW DIVERSIONS

First Increment


- Over 200 Kaf of flood flows diverted since 2011
- Resulting recharge in excess of 100 Kaf
- Accretions will benefit Platte River flows for many years into the future
- Process in place for future successes
- Reduces the need for additional regulations
- Creates greater resiliency in future periods

CWM FUTURE ACTIVITIES

- Expand implementation of CWM projects
- Enhance adaptation strategies based on management goals
- Support continued investment in maintaining and enhancing infrastructure
- Ensure that sound science and monitoring are available to support management decisions

MEETING DATES

- >September 19, 2018
- ➤ November 13, 2018
- ➤ January 15, 2019

Thank you