Central Nebraska Groundwater Flow Model

Prepared for Nebraska Department of Natural Resources Lincoln, Nebraska August 5, 2013

Central Nebraska Groundwater Flow Model

Prepared for Nebraska Department of Natural Resources, Lincoln, Nebraska August 5, 2013

950 West Bannock Street, Suite 250 Boise, Idaho 83702

Project Team

Nebraska Department of Natural Resources

Brandi Flyr James Gilbert Mahesh Pun Amy Wright Rick Vollertsen Jesse Bradley Jim Schneider

Brown and Caldwell

Robert Wyckoff Kathleen McHugh Julie M. Wright Brent Cain Wesley Hipke Kurt Zeiler Jeff Weaver

The Flatwater Group

Marc Groff Isaac Mortensen

Table of Contents

List	of Fig	ures		vi
List	of Gra	phs		vi
List	of Tab	oles		vii
List	of Abb	previatior	าร	ix
1.	Introd	duction		1-1
	1.1	Goals		1-1
	1.2	Approad	ch	1-2
		1.2.1	Climate Variability and Seasonality	1-2
		1.2.2	Land Use and Baseflow Separation Analyses	1-2
		1.2.3	Utilization of Existing Data	1-3
	1.3	Report (Organization	1-3
2.	Sourc	ces of Da	ta	2-1
	2.1	CropSin	٦	2-1
		2.1.1	Inputs	2-1
		2.1.2	Output	2-2
		2.1.3	Regional Soil Water Balance (RSWB) Model	2-2
	2.2	Elkhorn	-Loup Model (ELM)	2-3
	2.3	Land Us	e Analysis	2-4
	2.4	-	Elevation Models	
	2.5	Nebrasl	<a (nhd)<="" dataset="" hydrography="" national="" td=""><td>2-6</td>	2-6
	2.6	Gaging	Data	2-7
	2.7	Climate	Data	2-8
	2.8	Expansi	on Area – Northern Nebraska and South Dakota	2-8
3.	Hydro	ologic Set	tting	3-1
	3.1	Climate		3-1
	3.2	Topogra	phic Regions	3-2
	3.3	Surface	Water and Canals	3-2
	3.4	Land ar	nd Water Use	3-3
	3.5	Geology	/	3-4
		3.5.1	Quaternary Deposits	3-4
		3.5.2	Tertiary Ogallala Formation	3-5
		3.5.3	Tertiary Arikaree Group	3-5
		3.5.4	Tertiary White River Group	3-5
		3.5.5	Cretaceous Pierre Shale	3-5
4.	Conc	eptual M	odel	4-1
	4.1	Model D	Domain	4-1
	4.2	Aquifer	System	4-1

		4.2.1	Hydrostratigraphic Units	4-1
		4.2.2	Groundwater Flow	4-2
		4.2.3	Vertical and Lateral Hydrologic Boundaries	4-2
	4.3	Pumpin	g and Recharge	4-4
	4.4	Aquifer	Parameters	4-4
	4.5	Sources	s and Sinks	4-5
	4.6	Concep	tual Water Budget	4-5
		4.6.1	Underflow	4-6
		4.6.2	Recharge and Canal Leakage	4-6
		4.6.3	Pumping	4-6
		4.6.4	Evapotranspiration (ET)	4-7
		4.6.5	Discharge of Groundwater to Rivers and Streams	4-7
		4.6.6	Summary	4-7
5.	Nume	erical Mo	del Development	5-1
	5.1	Comput	ter Code Description	5-2
		5.1.1	Computer Code Assumptions	5-2
		5.1.2	Computer Code Limitations	5-2
	5.2	Units ar	nd Coordinate System	5-2
	5.3	Model [Discretization and Layering	5-2
		5.3.1	Layer Top and Bottom	5-3
		5.3.2	Revisions to Layer Thickness	5-3
	5.4	Stress F	Periods and Initial Conditions	5-3
	5.5	Model E	Boundaries	5-4
	5.6	Rivers a	and Streams	5-4
		5.6.1	Stream Width, Bottom Elevation, and Length	5-5
		5.6.2	Stream Slope, Thickness, and Depth	5-6
		5.6.3	Stream Conductivity	5-6
		5.6.4	Prescribed Baseflow	5-6
	5.7	Hydraul	lic Parameters	5-6
	5.8	Evapotr	anspiration (ET)	5-7
	5.9	CropSin	n-Derived Pumping and Recharge	5-7
	5.10	Canal R	echarge	5-9
6.	Calib	ration		6-1
	6.1	Calibrat	ion Approach	6-1
		6.1.1	Goals of Calibration	6-1
	6.2	Adjustm	nents to Model Parameters/Inputs during Calibration	6-3
		6.2.1	CropSim – Iterative Calibration Process	6-3
		6.2.2	Stream-Flow Routing Parameters	6-4
		6.2.3	Specific Yield and Specific Storage	6-4
		6.2.4	Canal Recharge	6-4
	6.3	Water L	evel Targets	6-5
		6.3.1	Steady-State Water Level Targets	6-5
		6.3.2	Transient Water Level Targets for Specific Years	6-6

		6.3.3	Long-Term Hydrographs	6-7
	6.4	Baseflo	w Targets	6-7
	6.5	Calibrat	ion Results – Qualitative	
		6.5.1	Steady-State Flow Regime	
		6.5.2	Transient Flow Regime	
		6.5.3	Groundwater/Surface Water Interaction	6-14
	6.6	Water B	udgets	6-15
		6.6.1	Steady-State Water Budget	6-15
		6.6.2	Transient Water Budget	6-16
	6.7	Calibrat	ion Results – Quantitative	
		6.7.1	Quantitative Results - Hydraulic Heads	6-18
		6.7.1.	1 Potential Bias in Model Results	6-19
		6.7.1.		
		6.7.1.		
		6.7.1.4	6	
		6.7.2	Quantitative Results - Baseflow	
		6.7.3	Summary	
7.	Sensi	tivity Ana	ilysis	7-1
	7.1	•		
	7.2			
		7.2.1	Hydraulic Conductivity	
		7.2.2	Stream Conductance	
		7.2.3	Specific Yield	
		7.2.4	Recharge	
		7.2.5	Pumping	
	7.3		ry	
8.			d Refinements	
	8.1		ons of the Model	
	8.2		al Model Refinements	
9.		•	Conclusions	
	9.1		Development	
	9.2		Performance	
	9.3		Review and Quality Control	
	9.4		ion Statement	
Figu	ires			FIG-1
Арр	endix	A: Matrix	of Data Sources for CENEB	Α
Арр	endix	B: CENEE	3 Stress Periods	В
Арр	endix	C: Water	Level Hydrographs	C
Арр	endix	D: Basefl	ow Hydrographs	D
Арр	endix	Z: Electro	onic Files on DVD	Z

List of Figures

Figure 1-1. Location Map Figure 2-1. CENEB Historical Irrigation Snapshots Figure 2-2. Streams, Irrigation Districts, and Canals Figure 2-3. USGS Gaging Stations in the Model Domain Figure 4-1. Hydrostratigraphic Units Figure 4-2. 1979 and 1995 Water Level Contours Figure 5-1. Boundary Conditions and Stream Cells Figure 5-2. Hydraulic Conductivity Distribution Figure 5-3. Specific Yield Distribution Figure 5-4. Evapotranspiration Rates Figure 5-5. Distribution of Pumping Stresses Figure 6-1. Wells Located in the CENEB Model Domain Figure 6-2. Steady-State Calibration Targets Figure 6-3. Well Targets with Long-Term Hydrographs Figure 6-4. Stream Gages Used as Baseflow Targets Figure 6-5. Steady-State Water Level Contours / Residuals Figure 6-6. Observed vs. Simulated Water Level Contours Figure 6-7. 2011 Simulated Gaining and Losing Reaches Figure 6-8. 2011 Simulated Water Levels and Residuals Figure 6-9. Mean Absolute Error in Baseflow Residuals by Gage

List of Graphs

Graph 4a. Long-Term Hydrographs Southeast (701) and Northeast (101) Model Domain.4-3Graph 4b. Long-Term Hydrographs Central (501) and Southern (601) Model Domain.4-3Graph 5a. Groundwater Pumping in the CENEB Model - Pre-1940 through 2011.5-8Graph 5b. Total Recharge in the CENEB Model - Pre-1940 through 2011.5-9Graph 6a. Simulated versus Observed Head Targets6-19Graph 6b. Observed Head Targets versus Residuals.6-20Graph 6c. Observed vs. Simulated Hydrograph for Well 4237300985600001.6-23Graph 6d. Observed vs. Simulated Hydrograph for Well 405400098223001.6-24Graph 6f. Observed vs. Simulated Hydrograph for Well 422150097402401.6-24Graph 6f. Observed vs. Simulated Hydrograph for Well 405137099085201.6-25	Graph 2a. CENEB Model Area Irrigation and Dryland Acreages 1960 - 2011	2-6
Graph 5a. Groundwater Pumping in the CENEB Model - Pre-1940 through 2011.5-8Graph 5b. Total Recharge in the CENEB Model - Pre-1940 through 2011.5-9Graph 6a. Simulated versus Observed Head Targets6-19Graph 6b. Observed Head Targets versus Residuals.6-20Graph 6c. Observed vs. Simulated Hydrograph for Well 42373009856000016-23Graph 6d. Observed vs. Simulated Hydrograph for Well 4054000982230016-24Graph 6e. Observed vs. Simulated Hydrograph for Well 4221500974024016-24	Graph 4a. Long-Term Hydrographs Southeast (701) and Northeast (101) Model Domain	4-3
Graph 5b. Total Recharge in the CENEB Model – Pre-1940 through 2011	Graph 4b. Long-Term Hydrographs Central (501) and Southern (601) Model Domain	4-3
Graph 6a. Simulated versus Observed Head Targets6-19Graph 6b. Observed Head Targets versus Residuals6-20Graph 6c. Observed vs. Simulated Hydrograph for Well 42373009856000016-23Graph 6d. Observed vs. Simulated Hydrograph for Well 4054000982230016-24Graph 6e. Observed vs. Simulated Hydrograph for Well 4221500974024016-24	Graph 5a. Groundwater Pumping in the CENEB Model – Pre-1940 through 2011	5-8
Graph 6b. Observed Head Targets versus Residuals	Graph 5b. Total Recharge in the CENEB Model – Pre-1940 through 2011.	5-9
Graph 6c. Observed vs. Simulated Hydrograph for Well 4237300985600001	Graph 6a. Simulated versus Observed Head Targets	6-19
Graph 6d. Observed vs. Simulated Hydrograph for Well 405400098223001	Graph 6b. Observed Head Targets versus Residuals	6-20
Graph 6e. Observed vs. Simulated Hydrograph for Well 422150097402401	Graph 6c. Observed vs. Simulated Hydrograph for Well 4237300985600001	6-23
	Graph 6d. Observed vs. Simulated Hydrograph for Well 405400098223001	
Graph 6f. Observed vs. Simulated Hydrograph for Well 405137099085201	Graph 6e. Observed vs. Simulated Hydrograph for Well 422150097402401	6-24
	Graph 6f. Observed vs. Simulated Hydrograph for Well 405137099085201	6-25

Graph 6g. Observed vs. Simulated Baseflow Niobrara River near Verdel	6-26
Graph 6h. Observed vs. Simulated Baseflow Keya Paha River near Naper	6-27
Graph 6i. Observed vs. Simulated Baseflow Elkhorn River at Norfolk	6-27
Graph 6j. Observed vs. Simulated Baseflow North Loup River near St. Paul	6-28
Graph 6I. Observed vs. Simulated Baseflow Loup River near Genoa	6-29
Graph 7a. Sensitivity Analysis – Hydraulic Conductivity	7-3
Graph 7b. Sensitivity Analysis – Stream Conductance	7-4
Graph 7c. Sensitivity Analysis – Specific Yield	7-5
Graph 7d. Sensitivity Analysis – Recharge	7-6
Graph 7e. Sensitivity Analysis Pumping	7-7

List of Tables

Table 2-1. Data Sources Used to Develop CENEB Land Use Datasets	2-4
Table 3-1. CENEB Precipitation by NCDC Climate Division	3-1
Table 3-2. River Basins in the CENEB Model Domain	3-3
Table 3-3. Canal Systems and Irrigation Districts	3-3
Table 3-4. CENEB Cropland Acreages 1940 versus 2011	3-4
Table 3-5. CENEB Irrigated Land	3-4
Table 4-1. Hydrostratigraphic Units of the High Plains Aquifer	4-1
Table 4-2. High Plains Aquifer Parameters	4-5
Table 4-3. Groundwater Sources and Sinks	4-5
Table 4-4. CENEB Steady-State Conceptual Budget (AFY)	4-8
Table 5-1. CENEB Model – Specifications	5-1
Table 5-2 Stress Period Timelines and Parameters	5-4
Table 6-1. CropSim Versions used in the CENEB Calibration Process	
Table 6-2. Summary of Water Level Targets – CENEB Model	6-6
Table 6-3. USGS Stream Gages Used as Baseflow Target Locations – CENEB Model	6-7
Table 6-4. CENEB Steady-State Water Budget	6-15
Table 6-5. Comparison of Conceptual versus Simulated Steady-State Water Budgets	6-16
Table 6-6. CENEB 2011 Transient Water Budget	6-17
Table 6-7. Comparison of June, August, and December 2011 Water Budgets	6-17
Table 6-8. Head Residual Calibration Statistics ¹ – CENEB Model	6-18
Table 6-9. Steady-State and Transient Head Residual Calibration Statistics1 – CENEB Model	6-22
Table 6-10. Baseflow Residual Calibration Statistics ¹ – CENEB Model	6-26

Table 6-11. Baseflow Residual Calibration Statistics for River Basins ¹ – CENEB Model	6-29
Table 7-1. Sensitivity Analysis Design – CENEB Model	7-1
Table 7-2. Sensitivity Analysis Results – Hydraulic Conductivity (Kx, Ky)	7-2
Table 7-3. Sensitivity Analysis Results – Streambed Conductance	7-3
Table7-4. Sensitivity Analysis Results – Specific Yield	7-4
Table 7-5. Sensitivity Analysis Results – Recharge	7-5
Table 7-6. Sensitivity Analysis Results – Pumping	7-6
Table 7-7. Summary of Sensitivity Analysis Results	7-7

List of Abbreviations

AFY	aero foot por voor
AID	acre-feet per year
	Ainsworth Irrigation District
amsl	above mean sea level
ASTM	American Society for Testing and Materials
AWDN	Automated Weather Data Network
BC	Brown and Caldwell
BWS	Basin Water Supply
CALMIT	Center for Advanced Land Management Information Technologies
CENEB	Central Nebraska
cfs	cubic feet per second
Соор	Cooperative Observer
DEM	digital elevation model
ELM	Elkhorn-Loup Model
ET	evapotranspiration
ft	feet
GIS	geographic information system
GHB	general head boundary
HPAS	High Plains Aquifer Study
М	mean
MAE	mean absolute error
mm	millimeters
NASS	National Agricultural Statistics Service
NCDC	National Climatic Data Center
NDNR	Nebraska Department of Natural Resources
NHD	National Hydrography Dataset
NRD	Natural Resources District
NWI	National Wetlands Inventory
PEST	Parameter Estimation
RMSE	root mean squared error
RSWB	Regional Soil Water Balance
Ss	specific storage
Sy	specific yield
SD	standard deviation
SFR2	Streamflow-Routing Package
UNL	University of Nebraska – Lincoln
USFWS	United States Fish and Wildlife Service
USFWS	

Section 1 Introduction

The Nebraska Department of Natural Resources (NDNR) is tasked with conducting an annual evaluation of all Nebraska river basins not currently designated as fully appropriated, over-appropriated, or for which a status reversal has not occurred within the past 4 years. Recently, a new methodology for determining basin status in support of the annual evaluation was developed based on a re-creation of the Basin Water Supply (BWS).

The BWS represents the water supply that is available for total use within a river basin, sub-basin, or reach. The BWS is calculated as the total of gaged streamflow, surface water consumptive use, and groundwater depletions. In the context of the new methodology, groundwater depletions are defined as groundwater use, which directly removes water from the BWS and ultimately reduces aquifer discharge (baseflow) to the streams. The general approach of the new methodology is to re-create a time series of the BWS from historical conditions through present day and assess groundwater depletions by comparing simulations of the BWS through time, with and without pumping and recharge associated with irrigation.

NDNR is working to develop new tools or to customize existing tools to support the new methodology for determining basin status using the best scientific data, information, and methodologies available. Where feasible, numerical groundwater flow models are being used to provide quantitative estimates of historical groundwater depletions, via simulations of the historical BWS through the present day. NDNR has determined that an appropriate numerical groundwater flow model would be the best available tool for the annual evaluation in the Lower Niobrara, Loup, and Upper Elkhorn River Basins.

1.1 Goals

NDNR contracted Brown and Caldwell (BC) to develop a numerical groundwater flow model to simulate the BWS in central Nebraska (Central Nebraska [CENEB] model) (Figure 1-1). As defined in the goals of the new methodology for determination of basin status, desirable characteristics of the tools utilized for the annual evaluation include:

- Reflect long-term variability (climatic/drought cycles)
- Reflect year-to-year variability in water supply
- Reflect seasonal variability in water supply
- Differentiate between surface water and groundwater demands and impacts (i.e., groundwater pumping and irrigation-related recharge from groundwater and surface water sources)
- Utilize existing datasets/observed data

The overarching goal of the project was to develop a modeling tool capable of simulating groundwatersurface water interactions in support of NDNR's annual evaluation of basin status, reproducing longterm trends under varying hydrologic and hydrogeologic conditions. The approach to CENEB model development was designed to meet this goal and demonstrate the appropriateness of the model for its intended use.

1.2 Approach

The CENEB project was designed as a collaborative effort between BC and NDNR. The initial phase of work consisted of a review and assessment of the available data and tools to support CENEB model development for simulation of the Lower Niobrara, Loup, and Upper Elkhorn River Basins in Nebraska and extending into South Dakota. A matrix analysis that summarizes the general results of the review and assessment is provided as Appendix A.

Based on the assessment of available data and tools, a detailed approach to address the goals of the project and support the quantitative assessment of groundwater depletions was developed by BC and NDNR. Pertinent aspects of the new methodology, the desirable characteristics of the modeling tool (listed in Section 1.1), and the ancillary analyses that would be required in support of model development were incorporated into the scope for the CENEB project.

1.2.1 Climate Variability and Seasonality

The variability in the water supply from year to year and season to season was a key factor in the recreation of the BWS time series. NDNR has worked with researchers at University of Nebraska-Lincoln (UNL) and additional experts in agricultural engineering to expand the field-scale, soil water balance model, CropSim, into a state-wide simulation tool. CropSim was developed specifically for Nebraska and is an integral component of groundwater modeling efforts throughout the state. CropSim incorporates weather station data, land use, soil parameters, and crop water demands to estimate recharge, runoff, evapotranspiration (ET), and pumping demands through time.

CropSim was used as the basis for estimating pumping and recharge inputs for the CENEB model, effectively addressing the need to capture climate and water supply variability, as well as differentiating between surface water and groundwater sources. Because the groundwater pumping and irrigation-related recharge are inextricably linked, the use of a single method and consistent set of assumptions to estimate pumping and recharge maintains the balance between these model inputs.

CropSim simulations are based on daily data, and were therefore aggregated into time periods to support the stress periods defined for the CENEB model timeline. To address the need for long-term, year-to-year, and seasonal variability in support of the annual basin evaluations, the CENEB model was designed to simulate the historical period from pre-1940 through 2011. Annual stress periods were used from pre-1940 through 1985; seasonal variations, using monthly stress periods, were simulated for the latter portion of the model timeline, beginning in 1986.

1.2.2 Land Use and Baseflow Separation Analyses

The project approach included the development of two large-scale datasets to support the CENEB project: a GIS-based land use analysis and a baseflow separation analysis.

The GIS-based land use analysis was performed by NDNR to provide cropland and rangeland acreages through time, differentiating between surface water and groundwater irrigated lands. The results of this analysis were used in CropSim.

The CENEB model simulates baseflow, or the discharge from the aquifer to the streams. Stream gage data includes all surface water flow and must be analyzed to separate baseflow from the total gaged flow. An in-depth baseflow separation analysis was completed by NDNR to provide baseflow targets for the CENEB model calibration. This dataset was a key component of the project, providing a means to assess the CENEB model simulation of groundwater depletions.

Details on the methods and results of the land use and baseflow separation analyses are provided in later sections.

A large portion of the area of interest for the annual determinations is included in the active model domain of the Phase II Elkhorn-Loup Model (ELM) (Peterson et al., 2008; Stanton et al., 2010); thus, the ELM structure (cell size, aquifer thickness, and major inflow/outflow boundaries) was used as a basis for development of the CENEB model. The ELM domain does not include the Lower Niobrara River Basin in its entirety; the CENEB model boundary was therefore expanded north of the Nebraska state line into South Dakota to incorporate the Lower Niobrara River and Ponca Creek drainages in the active model domain (Figure 1-1).

A summary of the major differences between the CENEB model and the ELM are listed below; details on CENEB model development and construction are summarized in Sections 4 and 5.


- Expanded active model domain, including a portion of South Dakota, to simulate the majority of the Niobrara River Basin
- Revised location and type of boundary conditions, primarily to the north
- Estimated recharge (except canal recharge) and pumping demands based on CropSim, a regional soil water balance (RSWB) model developed for Nebraska
- Increased number of stream-flow routing cells to simulate smaller order tributaries
- Monthly stress periods beginning in 1986 to capture seasonality
- Calibration to pre-1940 through 2011 water level measurements and long-term hydrographs of estimated baseflow

Key sources of data used in the development of the CENEB model are described in detail in Section 2; other sources of information are referenced as appropriate in later sections describing model conceptualization and construction.

1.3 Report Organization

This report generally follows American Society for Testing and Materials (ASTM) guidelines for groundwater flow model documentation (ASTM D 5718-95 [Reapproved 2000]).

Sources of data and a description of analyses performed in support of this project are discussed in Section 2. An overview of the hydrologic setting is provided as Section 3. The conceptual model summary in Section 4 and the discussion and approach to model construction in Section 5 provide details on the groundwater flow system and CENEB model development. The steady-state and transient calibrations to head and baseflow are described in Section 6. Results of the sensitivity analysis to assess the response of the CENEB model to changes in selected model input parameters, and identification of those parameters that most directly influence model results are provided in Section 7. Limitations and proposed refinements for future model updates are presented in Section 8, and an overall project summary with conclusions is provided as Section 9.

Section 2 Sources of Data

2.1 CropSim

The foundations of the CropSim model were developed by Dr. Derrel Martin at UNL and are described in more detail by Martin et al. (1984). The model and process as applied to the CENEB project are described below.

CropSim is a water-driven, soil water balance point model used to investigate the system response to different forms of vegetative growth. Crop production is based upon the availability of water in the root zone to the crop when needed. The amount of water present in the root zone can be estimated throughout the simulation period by systematically monitoring water inflows and outflows in the form of a water balance equation:

$$P + I = ET + RO + DP + \Delta SW$$
 Equation 1

- P Precipitation [inches]
- I Irrigation [inches]

ET Evapotranspiration [inches]

- RO Runoff [inches]
- DP Deep percolation [inches]
- ΔSW Change in soil water content [inches]

2.1.1 Inputs

The CropSim water balance considers five different categories of inputs; 1) weather data, 2) soil properties, 3) crop characteristics, 4) irrigation system characteristics, and 5) management characteristics.

- The hydrologic response of the system is highly dependent upon the climatic conditions. CropSim uses precipitation, temperature, and reference ET (ET_r) to simulate vegetative growth, water usage, and irrigation demand.
- 2) Soil can be thought of as a small reservoir, accumulating water from precipitation and irrigation up to its maximum holding capacity or saturation, and releasing it when needed for vegetative growth (ET). The presence of water in excess of the holding capacity is either restricted from infiltrating resulting in runoff or allowed to drain out the bottom of the soil profile as deep percolation after a soil specific period of time. There are numerous soil series, each with differing physical properties. To simplify the modeling process, soils are compiled into 28 different soil classes based on water holding capacity, hydrologic soil group, and distance to groundwater.
- 3) CropSim considers many crop specific attributes, such as crop phenology and growth, rooting depth, harvest index, residue, crop coefficients, response to insufficient available water, among others; many of these attributes vary with geographic location.
- Irrigation system characteristics provide a description of the irrigation sources and methods. Examples of these parameters include: system capacity, application efficiency, and irrigation limits.

5) Management characteristics take into account the human effect of crop production. Planting time, tillage practices, operational downtime, management-allowed depletion, and rainfall allowances are all dependent upon producer decisions. Practices common to the region were utilized during the simulations.

The inputs discussed above were used in the CropSim model to simulate crop growth and the soil water balance (Equation 1). Precipitation data were obtained directly from the weather files. Irrigation was applied to supplement precipitation during time of insufficient supply based upon the specific needs of the various vegetation types, while using a management-allowed depletion to schedule irrigation events with consideration being made for operational downtime and irrigation system capacity. The irrigation system's application efficiency was used to reduce the gross irrigation depth to a net irrigation requirement.

2.1.2 Output

ET is split between evaporation and transpiration. Evaporation is the non-productive consumption portion of ET. A two-stage method is used to estimate ET depending on whether energy or available water near the soil surface is the limiting factor, with considerations taken into account for vegetative coverage and residue. Transpiration is the productive consumptive use. CropSim uses the crop coefficient to relate transpiration to the reference ET. Insufficient water in the root zone will subject the crop to stress and reduce transpiration.

Runoff and deep percolation are the results of system inefficiencies. Runoff which is computed using an adjusted curve number approach occurs when the precipitation exceeds the initial abstraction. Deep percolation occurs when the depth of water in the soil profile exceeds the holding capacity and the excess water drains below the root zone.

CropSim simulations were made for irrigated and dryland cropping scenarios for each of the principal crops identified in the Land Use Analysis (Section 2.3). Each scenario was run continuously (i.e., irrigated corn on irrigated corn) for the duration of the simulated period. This process was repeated for each soil type at each weather station.

2.1.3 Regional Soil Water Balance (RSWB) Model

CropSim is an idealized model in which water is the only limiting production factor. Many other mechanisms affect crop growth, yields, and consumptive use and, therefore, affect the overall water balance: pests, disease, inclement weather, management decisions, technology adaptation, etc., can all have an impact. The RSWB is used to account for these exogenous influences by adjusting the water balance parameters to reflect local and regional field conditions while maintaining the water balance shown in Equation 1.

The primary purpose of the RSWB is to spatially distribute and maintain the CropSim water balance (Equation 1) for the various agricultural crops while being used as a calibration tool for the groundwater model.

Numerous soil types are present in the CENEB model domain. For simplicity and compatibility with the CropSim model, they were re-characterized into the CropSim soil classes. Each cell within the CENEB model domain was assigned to 1 of 21 different CropSim soil classes that are present in the CENEB domain based upon the predominant soil within that cell.

The water balance results from the CropSim model were spatially distributed from the weather stations to the CENEB model cells. This was accomplished using the inverse weighted distance technique from the three nearest stations to the centroid of each cell. The inverse weighted distance technique was applied to each vegetation type according to the soil class assigned to each cell.

Through calibration, the RSWB is used to regionally estimate irrigation demand based upon crop water needs (Net Irrigation Requirement, the depth of irrigation water efficiently added to the soil profile to meet a crop's full ET requirement) and compute consumptive use, while splitting the excess water between streamflow, recharge, and indirect ET. Finally, the RSWB is used to compile the pumping and recharge results into formatted files for inclusion into the groundwater model.

The CropSim and RSWB components of the CENEB modeling project are described in further detail in a forthcoming report by The Flatwater Group (*in progress*).

2.2 Elkhorn-Loup Model (ELM)

The ELM structure was used as a basis for the development of the CENEB model. The ELM is described in detail by Peterson et al. (2008) and Stanton et al. (2010); the main elements of the ELM are summarized below.

The ELM is a one-layer groundwater flow model that simulates approximately 30,000 square miles of the High Plains Aquifer in central Nebraska. The model was built using MODFLOW-2005, a modular, 3-dimensional, finite-difference groundwater modeling package developed by the United States Geological Survey (USGS) (Harbaugh, 2005). The single-layer High Plains Aquifer system simulated by the ELM is assumed to function as a continuous, hydraulically connected water table aquifer.

The active ELM domain includes the Elkhorn River Basin upstream of Norfolk and the Loup River Basin upstream of Columbus. The ELM simulates estimated steady-state and transient groundwater conditions from 1895 to 2005. The model was developed in two phases (Peterson et al., 2008; Stanton et al., 2010); references to the ELM in this report refer to the Phase II ELM published in 2010 unless otherwise specified.

The USGS employed a quasi-steady-state approach to simulate the time period from pre-1895 through 1939 using three stress periods. The period from 1940 to 2005 was simulated in a transient, calibrated simulation, called the Development model, using annual average hydraulic conditions (represented using annual stress periods) for the 66-year simulation. The steady-state simulation periods were defined to coincide with construction and use of canal systems in the model area. Model stresses (prescribed inputs and boundary conditions) in the quasi-steady-state models were therefore constant within each stress period and representative of the estimated prevalent conditions during each time period. The transient model simulation begins in 1940 and represents the onset of significant groundwater pumping and storage of water in Lake McConaughy.

The ELM simulates major rivers and select tributaries using the MODFLOW Streamflow-Routing Package (Prudic et al., 2004) except for the Platte River on the southern model boundary and the Lower Niobrara River just outside of the northern model boundary.

The ELM was calibrated to estimated stream baseflow and water levels during the steady-state simulation and to baseflow and decadal water level changes during the transient simulation. Calibration was achieved through trial-and-error revisions to input parameters and an inverse approach using automated Parameter Estimation (PEST) (Doherty, 2008a—b) to refine estimates of horizontal hydraulic conductivity and recharge from precipitation.

The basic ELM structure (layer thickness, cell size) and the locations of the model boundaries on the south, west, and east were used as the basis for CENEB model development. Additionally, calibrated aquifer parameters from the ELM provided the initial values for hydraulic conductivity, specific yield, and stream conductance for the CENEB model. A summary of the datasets and tools that were the starting point for CENEB model development is provided as Appendix A, including a detailed inventory of ELM datasets that were relied upon for this project. Revisions to the approach were made during model construction, as necessary; a complete description of model construction is presented in Section 5.

2.3 Land Use Analysis

A geographic information system (GIS) was used to create a spatially distributed land use dataset for the years 1940–2011 to provide a basis for assumptions regarding water use in CropSim. Land use categories in the model domain included irrigated/dryland corn, soybean, small grains, alfalfa, and rangeland. Cropped lands were categorized with the source of irrigation such as groundwater, surface water or both (comingled), or dryland farmed. The datasets were originally compiled in a field-scale vector format, but the data were eventually aggregated to 640-acre (1 mile by 1 mile) cells to correspond to the groundwater model discretization. The data sources that were used to create the land use dataset are listed in Table 2-1. Snapshots of irrigation land use through time are shown on Figure 2-1.

Table 2-1. Data Sources Used to Develop CENEB Land Use Datasets				
Agency/ Organization	Dataset	Period	Туре	Use
Middle Niobrara NRD	Digitized Certified Acres	2011	Spatial-Vector	Groundwater Irrigated Lands Distribution
Lower Loup NRD	Digitized Certified Acres	2011	Spatial-Vector	Groundwater Irrigated Lands Distribution
NDNR	Digitized Surface Water Rights Lands	2012	Spatial-Vector	Surface Water Irrigated Lands Distribution
NDNR	Registered Wells	2012	Spatial-Vector	Groundwater Irrigation first year; post- 2005 irrigation areas
NDNR	Points of Diversion	2012	Spatial-Vector	Surface Water diversion priority year
CALMIT	Land Use Dataset	2005	Spatial-Vector	Groundwater Irrigated Lands, Dryland Distribution
USDA NASS	County Crop Statistics	1940-2011	Tabular	County Irrigated Lands, Dryland totals; County Crop types
COHYST	Land Use Dataset	2005	Tabular	Land Use Distribution in COHYST portion of model area
COHYST	Land Use Dataset	2010	Spatial	Land Use Distribution in COHYST portion of model area

NRD = Natural Resources District

COHYST = Platte River Cooperative Hydrology Study

NASS = National Agricultural Statistics Service

The distribution of irrigated lands was developed using a combination of data sources, including the Natural Resources Districts (NRDs), the Center for Advanced Land Management Information Technologies (CALMIT), and NDNR data. NRD-digitized certified acres were considered the authoritative dataset to show the extent of groundwater irrigated lands and were used whenever available. In the absence of digitized certified acres, an updated version of the 2005 CALMIT irrigated parcels dataset was used. Updates were created by digitizing lands associated with post-2005 wells, identified by 2010 aerial imagery interpretation (2011 aerial imagery was not flown for Nebraska). NDNR surface water rights digitized fields were used to show the extent of surface water points of diversion were used to develop the historical time component (well installation year or surface water priority year) of irrigated lands. Irrigation type was assigned as comingled in areas where surface water and groundwater irrigated lands overlapped.

There was limited data available to create a historical dryland spatial dataset. The 2005 CALMIT land use dataset was the only spatial dataset that showed the extent of dryland over the entire CENEB area. There were no historical time component data (e.g., well installation year, surface water permit year) that could be attributed to dryland. Hence, the creation of historical dryland spatial dataset relied on two overarching assumptions:

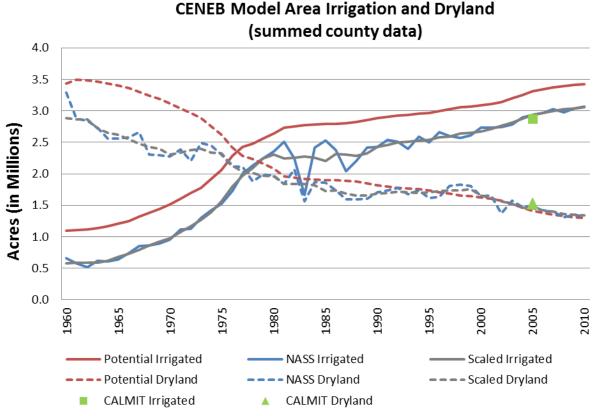
- Lands that were dryland farmed in 2005 had potential to be dryland farmed historically
- Lands that are currently groundwater irrigated had potential to be dryland farmed prior to a well installation.

These assumptions are consistent with the general history of arable land cultivation in agricultural areas in the Midwest and Plains. By applying these assumptions, a "potential dryland" spatial dataset was created by combining the irrigation dataset with dryland areas extracted from the 2005 land use dataset. The resulting dataset represented all areas of land that could potentially be dryland farmed in any given year, provided the land was not being used for groundwater irrigation. Land use for the South Dakota expansion area was simplified to be rangeland throughout the model period because relatively little irrigation has been developed there, and because this area was added to buffer boundary effects on the Niobrara River in the groundwater model.

A GIS program was implemented to partition the field-scale land use data into 640-acre cells to show the extent of potentially irrigated and dryland farmed lands at the model cell level.

However, it was recognized that the full extent of cropped lands defined as described may or may not actually be farmed in a given year. Therefore, the dryland and irrigated acreages were scaled according to county-level aggregate data from the National Agricultural Statistics Service (NASS), which provided measures of lands under irrigated and dryland cultivation for the CENEB model period. The land use data derived from GIS were aggregated to the county level, then scaled to NASS data using a 5-year moving average so that the estimates and trends in NASS data were captured. It should be noted that an exact match was not desired due to potential reporting discrepancies within the NASS data, and also because the NASS data that was used was based on harvested acres and did not account for acres lost to acts of nature. Because of inconsistencies in the pre-1960 NASS data, the scaling for the years 1940–1960 was based on 1960 NASS data values.

The 2005 CALMIT land use dataset estimates of irrigated and dryland acres were also plotted as a spot check for the CENEB areas. The 2005 CALMIT land use dataset was considered the best data source to show actual irrigated and dryland acres for this year only, because it was based on actual observations of the land via remote sensing.


Graph 2a shows the study area aggregate acreages of all CENEB land use data, the NASS data, the adjusted CENEB data that were scaled to NASS, and the CALMIT data estimates that were used as a spot check. As shown, the land use irrigated acres were higher than NASS reported acres throughout the time period, which indicates that all lands that *could* be irrigated were *not actually* irrigated. The potential dryland acres were also higher than NASS reported acres up until about 1990. This indicates that part of the land that is currently irrigated was actually rangeland in earlier years and not used for dryland as originally assumed. It should also be noted that the 2005 scaled data closely compares to the CALMIT land use dataset estimates. This is a good indicator that reasonable estimates are achieved when using the method described here to create land use datasets for CropSim modeling.

CropSim requires information about crop type, as the reference crop method takes into account that different ET levels occur for different crop types. The NASS dataset was the only available resource to show crop distribution through time. Again, these data were only available at the county scale. The NASS crop type data were assembled for all counties for the years 1960–2011. Corn, soybeans, alfalfa, and small grains were found to be the most prevalent crops in both model areas and were designated as the crops to use for both modeling projects. Normalization by county was implemented so that all cropland would be partitioned into only the designated crop types.

The irrigated and dryland county-based scaling factors were applied to all cells containing irrigated and/or dryland acres in that county. Rangeland was assigned to all space in a cell that was not used for dryland or irrigated crops after the NASS scaling factors had been applied. All areas in South Dakota

were assigned as rangeland due to the lack of widespread irrigation development in that area and the relatively minor importance of that buffer zone to the area of interest. Crop types were applied as a homogeneous "crop mix" to all cells containing cropland in that county. The resulting dataset was a tabular dataset that contained information by cell about the number of irrigated and dryland cropland acres, type of irrigation used, and number of rangeland acres.

Graph 2a. CENEB Model Area Irrigation and Dryland Acreages 1960 - 2011

2.4 Digital Elevation Models

The CENEB project required elevations for defining layer surfaces, monitoring well values, and boundary condition properties. Digital elevation models (DEMs), provide spatially distributed elevations at various resolutions. The 10-meter DEM distributed jointly by the USGS and NDNR

(<u>http://www.dnr.ne.gov/databank/dem.html</u>) provides complete coverage for the Nebraska portion of the CENEB model area. The 30-meter DEM distributed by the South Dakota Department of Environment and Natural Resources (<u>http://www.sdgs.usd.edu/digitaldata/dem.html</u>) provides coverage for the South Dakota portion of the CENEB model.

Both datasets were developed through the digitization and tagging of variable-interval topographic contour lines on 7.5-minute USGS quadrangle maps. These digitized contours were interpolated using GIS processes to create the tiled rasters that are distributed via the web sources listed above. The unit of elevation used in these datasets is feet (ft) relative to the National Geodetic Vertical Datum 1929.

2.5 Nebraska National Hydrography Dataset (NHD)

The National Hydrography Dataset (NHD) provides a spatial representation of stream and surface water features as a reference for boundary condition assignment in the CENEB model. The NHD is a

"comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells" (<u>http://dnr.ne.gov/databank/nhd.html</u>) that is developed and maintained in Nebraska through a partnership between the NDNR and the USGS. The NHD consists of vector data types that represent flowlines, water body outlines, points, connectors, and other hydrologic features that, collectively, give scientists and hydrographers a means for mapping and quantifying spatial relationships of a drainage network.

The NDNR maintains and distributes an interpreted NHD for Nebraska basins (including the South Dakota portion of CENEB) that specifically contains polyline features that represent perennial stream and river reaches (<u>ftp://dnrftp.dnr.ne.gov/Pub/data/NHD</u> statewide/NHD Derivatives.zip). In the NHD, a perennial reach is defined as a body of flowing water that contains water throughout the year except for infrequent periods of drought (<u>http://nhd.usgs.gov</u>). This dataset, in conjunction with the more comprehensive NHD flowline datasets (i.e., those containing intermittent, ephemeral, and artificial reaches) and low-flow field survey data, was used as the basis for defining the extent of the surface water system to be simulated in the CENEB model.

The NHD derivatives dataset also includes a spatial representation of irrigation canal paths as polyline features. The three main irrigation district areas – Ainsworth Irrigation District, irrigation districts on the Loup system, and the canal on the north side of the Platte River – are represented in this dataset. The detail varies by canal system but generally contains the main delivery canal with significant distribution laterals. The distribution of the drainage network and canal systems in the CENEB area is shown on Figure 2-2.

2.6 Gaging Data

Stream gaging stations throughout the CENEB model area provide a measure of streamflows over time. Streamflows generally consist of a mix of overland runoff, direct precipitation, and groundwater discharge, or baseflow. Estimates of baseflow serve as useful calibration targets for the CENEB model and were derived from daily streamflow data recorded at gaging stations. The gaging stations utilized for streamflow are shown on Figure 2-3; additional details are provided in Section 6. The historical daily stream discharge data at each of these stations was queried from the USGS National Water Information System web service (http://waterdata.usgs.gov/ne/nwis/nwis) and NDNR's internal stream gaging database. The reviewed (non-provisional) NDNR stream gaging data is provided to the public via the web pages at http://dnr.ne.gov/docs/hydrologic2013.html. At the time of the development of the CENEB model, this website was taken offline for revisions and updates, so data was taken directly from the reviewed sets in the internal NDNR database.

Individual farmers and larger irrigation districts throughout the CENEB area divert water from stream channels through canals or pumps for delivery to fields or reservoirs some distance from the channel. This influences the character of the measured hydrographs at stream gages and thus baseflow estimation, so corrections are sought to restore the natural hydrograph. These corrections can be made by adjusting for the diversion of water from the channel. These diversion data are collected and maintained by the NDNR and are part of the gaging data available via the public web page and internal databases. A listing of canal diversion gages utilized for baseflow estimation is provided in Table 2-2.

Gage ID	Name	Period of Record		
		Start		
1000	Ainsworth Canal from Snake River And Merritt Reservoir (15-Foot Parshall Flume)	6/1/1965 - 12/31/2011		
100500	Mirdan Canal from Calamus Reservoir	4/1/1987-12/31/2011		
107000	Taylor-Ord Canal from North Loup River (Rating Flume)	5/1/1947 - 12/31/2011		
108000	Burwell-Sumter Canal from North Loup River (Rating Flume)	5/1/1947 - 12/31/2011		
76500	Kent Canal from North Loup River	4/1/1995 - 12/31/2011		
130000	Sargent Canal from Middle Loup River (10-Foot Parshall Flume)	4/1/1957 - 12/31/2011		
90000	Middle Loup Canal No. 1 from Middle Loup River (Rating Flume)	1/1/1950 - 12/31/2011		
91000	Middle Loup Canal No. 2 from Middle Loup River (Rating Flume)	5/1/1947 - 12/31/2011		
90200	Middle Loup Canal No. 1 Pump from Middle Loup River	5/1/1987 - 12/31/2011		
109000	Ord-North Loup Canal from North Loup River (Rating Flume)	5/1/1947 - 12/31/2011		
47000	Farwell (Sherman Feeder) Canal from Middle Loup River (25-Foot Parshall Flume)	11/1/1962 - 12/31/2011		
93000	Middle Loup Canal No. 4 from Middle Loup River (Rating Flume)	5/1/1947 - 12/31/2011		
92000	Middle Loup Canal No. 3 from Middle Loup River (Rating Flume)	5/1/1947 - 12/31/2011		

2.7 Climate Data

Climatic conditions greatly influence vegetative growth and thus are a significant input into the CropSim model. A total of 44 weather stations were chosen in and around the model domain to represent the historical climatic conditions. The weather stations listed in Appendix D of the 2013 Annual Evaluation of Availability of Hydrologically Connected Water Supplies; Determination of Fully Appropriated (NDNR, 2012) served as the initial list. However, by limiting the weather stations to this list, there were several large areas within the model domain that failed to have a nearby weather station. Therefore, additional weather stations were chosen because of their proximity to these gaps. Each of these weather stations needed to have the following characteristics:

- Minimum and Maximum Temperature
- Precipitation
- Records from 1/1/1948 or earlier through the end of 2011

Additional weather stations from the National Weather Service (NWS), Cooperative Observer (Coop) network and the Automated Weather Data Network (AWDN) were evaluated. The NWS/Coop network records span a longer period of time but contain limited data as opposed to the AWDN. The AWDN collects more types of data (relative humidity, net radiation, etc.) more frequently, but the historical records are limited (the earliest data starting in the 1980s) and there are fewer stations. Because the simulation period begins in approximately 1940, the NWS/Coop weather stations were considered to be most appropriate to support the CENEB project. The weather station data were reviewed for quality and consistency before being utilized in the CropSim process. Additional details on the processing and aggregation of the climate data will be provided in the forthcoming report that describes the CropSim modeling performed for this project (The Flatwater Group, *in progress*).

2.8 Expansion Area – Northern Nebraska and South Dakota

Background information on the geology and hydrogeology in the expansion area in the northern portion of the CENEB model domain relied on the following sources:

• South Dakota Geologic Map (GIS)

- Simulated Ground-Water Flow in the Ogallala and Arikaree Aquifers, Rosebud Indian Reservation Area, South Dakota (Long et al., 2003)
- Simulated Groundwater Flow in the Ogallala and Arikaree Aquifers, Rosebud Indian Reservation Area, South Dakota – Revisions with Data Through Water Year 2008 and Simulations of Potential Future Scenarios (Long and Putnam, 2010)
- Hydrogeology of a Portion of the Sand Hills and Ogallala Aquifer, South Dakota and Nebraska (Rahn and Paul, 1975)
- Hydrogeological Assessment of the High Plains Aquifer in Tripp and Gregory Counties, SD (Filipovic, 2004)
- Development of Niobrara Basin Hydrogeologic and Hydrostratigraphic Framework Completion Report by J. Ayers (Conservation and Survey Division, 2010).

Section 3 Hydrologic Setting

3.1 Climate

The long-term average annual precipitation in the model domain was estimated using the National Climatic Data Center (NCDC) database, which contains long-term monthly precipitation data by climate divisions. Precipitation data can vary greatly from year to year, e.g., the annual precipitation for Nebraska in 1940 was 16.4 inches; however, the long-term (1895 to 2011) annual precipitation average is 22.9 inches (NCDC, 2012). Precipitation was calculated by overlaying the NCDC climate divisions on the CENEB model area in GIS. Across the model area, the long-term average precipitation ranges from a high slightly over 28 inches in the eastern portion of the model (NE-Zone 6) to a low of 17 inches on the western edge of the model (NE-Zone 1) (NCDC, 2012). Table 3-1 provides a breakdown of the climate divisions within the model area, the long-term average precipitation, and the percent of the climate division within the model area (climate divisions comprising less than 1 percent of the CENEB model area were not included).

Table 3-1. CENEB Precipitation by NCDC Climate Division				
NCDC Climate Division	Long-Term Average Annual Precipitation (inches)	Percent of CENEB Model Domain		
Nebraska				
1	17.3	1%		
2	21.5	55%		
3	26.1	10%		
5	23.9	20%		
6	28.5	4%		
7	20.1	5%		
South Dakota				
8	20.1	5%		
Total Weighted Average	22.5	100%		

¹Weighted average based on the amount of climate division in the model area.

Due to the wide range in precipitation, two major climatic zones are represented in Nebraska: the eastern half of the state has a humid continental climate characterized by large seasonal temperature differences, with warm to hot summers and cold winters, and the western half has a semi-arid climate where the precipitation is less than the potential ET. Average monthly temperatures range from a high of 89.5 degrees Fahrenheit to a low of 8.9 degrees Fahrenheit.

South Dakota has an interior continental climate, with cold, dry winters to hot and semi-humid summers. The average high summer temperature is 90 degrees Fahrenheit; the average low temperatures are below 10 degrees.

3.2 Topographic Regions

The state of Nebraska is characterized by distinct topographic regions (Conservation and Survey Division, 1973); the following are found within the CENEB model domain (in order of prominence):

- Sand Hills (dune sands)
- Dissected plains (hilly land eroded by water and wind)
- Plains (sandstone and stream-deposited silt, clay, sand, and gravel overlain by wind-deposited silt)
- Valleys (flat-lying land along the major streams composed of unconsolidated silt, clay, sand, gravel)
- Bluffs and escarpments

The state of South Dakota is characterized by three major topographic regions: the Central Lowlands in the east, the Great Plains to the west, and the Black Hills, a small area near the western edge of the state. The southern half of the Black Hills can be seen on the shaded relief basemap on Figure 1-1. The small, south-central portion of South Dakota included in the CENEB model domain is in the Central Lowlands and includes an extension of the Sand Hills region of Nebraska (Malo, 1997).

Topographic relief in the model region is approximately 3,143 ft, ranging from a high of 4,286 ft above mean sea level (amsl) on the western boundary to a low of 1,143 ft amsl near the eastern model boundary.

3.3 Surface Water and Canals

Rivers, streams, and canals within the model domain are shown on Figure 2-2. The model domain includes the Loup River Basin upstream of Columbus, Nebraska, the Elkhorn River Basin upstream of Norfolk, Nebraska, and the majority of the Niobrara River Basin and the Ponca Creek drainage. The major tributaries in these basins, and the acreage included in the active model domain, are summarized in Table 3-2. The Missouri River flows north-northwest along a small section of the northeastern boundary of the model, and the Platte River bounds the model domain on the south. The Keya Paha River, one of the main tributaries of the Niobrara River, extends into the South Dakota portion of the model domain. Ponca Creek drains the remaining portion of South Dakota in the model domain, and discharges to the Missouri River near the northeast model boundary; the confluence of Ponca Creek and the Missouri River is outside of the active model domain. Surface water flow is generally west-east or northwest-southeast.

Canal networks were constructed in Nebraska to facilitate crop irrigation beginning in the late 1800s. The locations of the canal systems within the CENEB domain are shown on Figure 2-2. The Cozad Canal, Dawson Canal, Gothenburg Canal, and Kearney Canal systems began diverting water in 1895 to expand agricultural crop production. In the early to mid-1900s the Elm Creek Canal (1929) and Birdwood Irrigation District (1946) systems were added to the already existing canal networks. The first irrigation districts in the Loup River Basin were not constructed until the mid-1900s (Table 3-3). Irrigation in the Niobrara River Basin is limited to the Ainsworth Irrigation District, which began operating in 1965. During the CENEB model simulation period, the only canal system to begin and then end operations was the Elm Creek Canal system, which ceased water diversions in 1962 (Stanton et al., 2010). Table 3-3 presents the inception years for the individual canal systems located within the CENEB model domain.

Table 3-2. River Basins in the CENEB Model Domain				
River Basin	Major Tributaries in the Model Domain	Area within Model Domain	Percent of Total	
Niobrara	Keya Paha River Snake River	8,500 mi ²	25%	
Elkhorn	North Fork Elkhorn South Fork Elkhorn	2,700 mi ²	11%	
Loup	Beaver Creek Cedar River North Loup River Calamus River Middle Loup River Mud Creek South Loop River	14,500 mi ²	43%	
Platte	Wood River North Platte River Birdwood Creek	4,800 mi ²	17%	
Missouri	Ponca Creek White River	1,500 mi ²	4%	

Table 3-3. Canal Systems and Irrigation Districts		
Name	Startup	
Cozad Canal System		
Dawson Canal System		
Elm Creek Canal System*	Pre-1940	
Gothenburg Canal System		
Kearney Canal System		
Birdwood Irrigation District	1946	
Middle Loup Public Power and Irrigation District	1947	
North Loup Irrigation District	1947	
Sargent Irrigation District	1957	
Farwell Irrigation District	1963	
Ainsworth irrigation District	1965	
Twin Loups Irrigation District	1987	

*Ceased operation in 1962.

3.4 Land and Water Use

Land use in the CENEB model domain is predominantly rangeland/pasture/grasslands of the Sand Hills region; cropland, irrigated and non-irrigated, ranks second. The major crop types are corn and soybeans, with minor cropland in alfalfa and small grains (wheat, oats, barley, rye, and millet). Other land use types – rural communities, lakes, wetlands, and riparian areas – are a small percentage of the total acreage within the model area (CALMIT, 2007).

Land use databases developed by NDNR for this project utilizing CALMIT (2007) and other sources were used to summarize the number of acres of irrigated and non-irrigated cropland within the model domain. Table 3-4 provides a breakdown of these land use types in 1940 and 2011, to illustrate the extensive increase in irrigation during the period of interest.

Table 3-4. CENEB Cropland Acreages 1940 versus 2011			
Category	Acres in 1940	Acres in 2011	
Irrigated Cropland	157,558	2,972,496	
Non-Irrigated Cropland	3,251,806	1,175,673	
TOTAL Cropland	3,409,364	4,148,169	

Source: GIS Analysis of Land Use conducted by NDNR for this project.

Agricultural demands for surface water and groundwater in the model domain are a significant portion of the total water budget. Additional demands include hydropower (low consumptive use) and municipal pumping (minor demand).

Table 3-5 presents the acreage of cropland irrigated by surface water and groundwater in 1940 and 2011. Total irrigated acreage increased by approximately 2.8 million acres during this period. By 2011, there were 2.97 million acres of irrigated cropland within the CENEB model area, of which approximately 88 percent were irrigated solely with groundwater and 4 percent were partially groundwater supported (Table 3-5).

Table 3-5. CENEB Irrigated Land		
Type of Irrigation	Acres in 1940	Acres in 2011
Groundwater	67,053	2,622,482
Surface Water & Groundwater	6,541	110,501
Surface Water	83,964	239,513
TOTAL Irrigated Acres	157,558	2,972,496

Source: GIS Analysis of Land Use conducted by NDNR for this project.

3.5 Geology

The CENEB model domain lies within the extent of the High Plains Aquifer region as described by McMahon et al. (2007). Within the model domain, the High Plains Aquifer is composed of near-surface, generally unconsolidated sedimentary deposits of mid-Tertiary to Holocene age, underlain by relatively impermeable fine-grained sedimentary rocks of Upper Cretaceous to mid-Tertiary age (Peterson et al., 2008). Individual geologic units are variably incorporated into the High Plains Aquifer system depending on lateral and vertical hydraulic connectivity, degree of saturation, and, in older deposits, the presence of secondary permeability resulting from joints and fractures (McMahon et al., 2007; Peterson et al., 2008). Most of the study area is underlain by a variable thickness of Quaternary eolian and alluvial deposits burying Ogallala Formation, Arikaree Group, and White River Group sediments, with the exception of the north end of the model domain, where Quaternary erosion along the Niobrara River and Ponca Creek has exposed the Upper Cretaceous Pierre Shale.

3.5.1 Quaternary Deposits

Quaternary deposits consist of alluvial gravel, sand, silt, and clay as well as eolian sands of the Sand Hills area and silty to very fine sandy loess. Quaternary deposits are commonly 0 to 200 ft thick, though locally up to 700 ft thick, and, with sufficient saturated thickness, can be a substantial source of groundwater (Peterson et al., 2008). Deposits are typically unconsolidated, with the exception of local caliche accumulations, and are considered a part of the High Plains Aquifer system where saturated and hydraulically connected to adjacent units (McMahon et al., 2007).

3.5.2 Tertiary Ogallala Formation

The Ogallala Formation has the largest areal extent of all the geologic units of the High Plains Aquifer (McMahon et al., 2007) and is nearly ubiquitous across the CENEB model domain. It is a heterogeneous deposit of clay, silt, sand, and gravel associated with aggrading streams derived from Miocene-age highlands to the west that filled and buried paleovalleys carved into pre-Ogallala strata (McMahon et al., 2007). It is typically unconsolidated, with the exception of the upper portion of the formation which is locally cemented by calcium carbonate (caliche) and very locally by silica. Based on exploration drill holes, the maximum thicknesses for Ogallala deposits in the model domain area are approximately 700 ft, with an average thickness of 170 ft (Conservation and Survey Division, 2006). Many of these test holes did not penetrate the entire thickness of the deposit, however, and Peterson et al. (2008) suggest this calculated average thickness underestimates the true average thickness for the area. The Ogallala Formation, as well as overlying Quaternary deposits, are locally absent along the Niobrara River and Ponca Creek at the north end of the model domain (McMahon et al., 2007).

3.5.3 Tertiary Arikaree Group

The Arikaree Group is composed of poorly consolidated, tuffaceous sandstone, siltstone, shale, and silty clay (Long et al., 2003). It is generally a low permeability/low conductivity unit but can be a part of the High Plains Aquifer system when exhibiting secondary permeability from fracturing (Long et al., 2003; McMahon et al., 2007). Maximum thickness for this unit is approximately 1,000 ft, and it is absent from the eastern portion of the model domain (McMahon et al., 2007).

3.5.4 Tertiary White River Group

White River Group sediments typically consist of poorly consolidated siltstones and claystones, with local fine sandstones (Long et al., 2003). Deposits are typically low permeability/low conductivity, but the Brule Formation, the uppermost unit of the White River Group, locally contributes to the aquifer system where substantial thicknesses of saturated sandstones are present or where joints and fractures have induced secondary permeability (Long et al., 2003; McMahon et al., 2007). Maximum thickness for the Brule Formation is approximately 600 ft, and deposits are absent from the eastern portion of the study area ((McMahon et al., 2007).

3.5.5 Cretaceous Pierre Shale

Underlying the High Plains Aquifer in the model domain is the Upper Cretaceous, marine Pierre Shale. The shale is of low permeability and generally not considered a productive unit within the local or regional aquifer system. The unit is up to 1,400 ft thick (Long et al., 2003), and it is locally exposed in the study area along the Niobrara River and Ponca Creek, where Quaternary erosion has removed the overlying strata.

Section 4 Conceptual Model

The CENEB model structure was based on the ELM, which was expanded to include the portions of the High Plains Aquifer in the Niobrara River Basin and Ponca Creek drainages, extending the model boundary to the north and northeast past the Nebraska state line and into South Dakota. The conceptual model of the aquifer system is described by Peterson et al. (2008) and Stanton et al. (2010) for ELM I and ELM II, respectively, and will not be reproduced in this report. This conceptual model section focuses on a general overview of the previously modeled region, including revisions or updates specific to the CENEB model, and provides details for the model expansion area.

4.1 Model Domain

The CENEB active model domain encompasses approximately 34,449 square miles in central Nebraska with a small extension into South Dakota (Figure 1-1). The western boundary is in the Nebraska Sand Hills, the eastern boundary is in the Loess Hills, coinciding with the westernmost extent of glacial till (Peterson et al., 2008). The Platte River flows along the southern boundary, and to the north; the model extends into South Dakota with the boundary defined at the northernmost extent of the Ogallala Formation within the Ponca Creek and Keya Paha drainage basins. Approximately 95 percent of the model domain is in Nebraska; the remaining 5 percent is in central South Dakota.

4.2 Aquifer System

4.2.1 Hydrostratigraphic Units

The High Plains Aquifer in Nebraska and South Dakota is an unconfined system composed of sedimentary deposits of Quaternary, Tertiary, and Cretaceous age (Figure 4-1). Table 4-1 presents a summary and description of the hydrostratigraphic units comprising the High Plains Aquifer system compiled from various sources.

The aquifer system thins from south to north and from west to east; the base of the aquifer slopes eastward at approximately 8 ft per mile (Peterson et al., 2008). Saturated thickness of the aquifer in the model domain ranges from less than 100 to greater than 600 ft (McMahon et al., 2007).

Table 4-1. Hydrostratigraphic Units of the High Plains Aquifer				
Age	Hydrostratigraphic Unit	Description	Estimated Thickness	Notes
	Unconsolidated Alluvium	Fluvial floodplain and terrace deposits of gravel, sand, silt, and clay	0 - 60	Forms part of High Plains Aquifer where hydraulically connected to underlying Quaternary and Tertiary deposits
Quaternary	Dune Sand	Unconsolidated, very fine to medium-grained eolian sand	0 - 300	Comprises large portion of the vadose zone in the Sand Hills region and has high recharge potential; forms part of the High Plains Aquifer where saturated
	Loess	Eolian deposit composed of silt with lesser amounts of very fine sand and clay	0 - 250	Poorly sorted clay, silt, sand, and gravel, generally unconsolidated; some caliche near the top of the formation

Plains Aquifer		

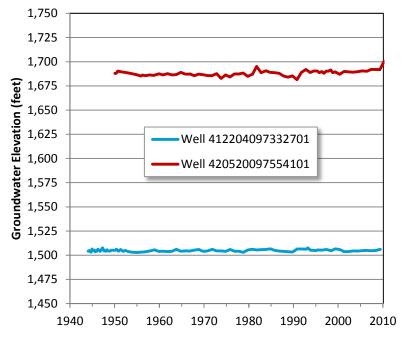
Table 4-1. Hydrostratigraphic Units of the High Plains Aquiter				
Age	Hydrostratigraphic Unit	Description	Estimated Thickness	Notes
Tertiary	Ogallala Fm	Heterogeneous sequence of clay, silt, sand, and gravel; locally cemented caliche and silica zones near top of the Fm, forming escarpments. Poorly consolidated sandstone and siltstone.	0 - 700	Main stratigraphic unit in the High Plains Aquifer where saturated
Tertiary	Arikaree Group	Fine- to very fine-grained sandstone and siltstone	0 - 1,000	Forms part of the High Plains Aquifer in parts of the northern High Plains (Nebraska and South Dakota)
Tertiary	White River Group (Upper Brule Formation)	Claystone and siltstone with beds of sandstone	0 - 600	Upper Brule Formation siltstone forms part of the High Plains Aquifer where jointed and fractured—maximum thickness is 600 ft; base of aquifer where not jointed/fractured
Cretaceous	Pierre Shale	Dark-gray to black marine shale		Base of aquifer - low permeability

Table /1-1 Hydroctratigraphic Units of the High

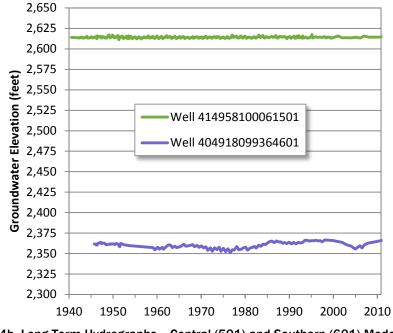
Source: A compilation of data from McMahon et al., 2007; Peterson et al., 2008; Stanton et al., 2010; Chen and Chen, 2004; Kolm and Case, 1983; Rahn and Paul, 1975.

4.2.2 Groundwater Flow

Groundwater in the unconfined High Plains Aquifer within the model domain generally flows from westnorthwest to east-southeast as depicted on Figure 4-2 (Conservation and Survey Division, 1996; 2003). The average hydraulic gradient is approximately 0.0019 ft/ft. The maximum water level elevations of approximately 3,850 ft amsl are located along the western model boundary; the lowest water level elevations are less than 1,500 ft amsl and located along the eastern model boundary.


Most of the rivers and tributaries within the CENEB model domain are gaining from groundwater discharge (Nebraska Natural Resources Commission, 1982). The streams gain water from the groundwater system when groundwater levels are higher than the stream bottom and recharge the aquifer when water levels are below the stream bottom, maintaining an equilibrium that is characterized by long-term stability in aquifer water levels.

A study by the USGS on the High Plains Aquifer states that water level changes from predevelopment ("before about 1950") to 2007 across most of the CENEB model area ranged between -10 and +10 ft (McGuire, 2009). Thus, the groundwater flow system has been relatively stable since predevelopment. The USGS analysis shows isolated areas of greater rises and declines scattered throughout the model area; however, most of these areas exhibit less than a 25 ft rise or decline (McGuire, 2009). A comparison of water table contours from 1979 and 1995 (Figure 4-2) demonstrates that there is little to no change in groundwater elevations from 1979 to 1995 in the western portion of the model area and only slight changes exhibited in the east. Four long-term groundwater hydrographs for wells in the southeastern, northeastern, central, and southern portions of the model domain are presented on Graphs 4a and 4b (below) to illustrate the long-term stability of the groundwater system.


4.2.3 Vertical and Lateral Hydrologic Boundaries

Groundwater enters the model domain on the west, and exits the domain as underflow to the northeast (toward the Missouri River), to the south (toward the Platte River), and to the east. Groundwater also exits the aquifer system via discharge as baseflow to rivers and streams. The northern boundary of the model is at the northern extent of the productive High Plains Aquifer units (Arikaree Group and Ogallala Formation) in the Keya Paha River and Ponca Creek drainage basins; groundwater does not exit the northern boundary, except to the northeast, near the Missouri River.

Graph 4a. Long-Term Hydrographs – Southeast (701) and Northeast (101) Model Domain.

Graph 4b. Long-Term Hydrographs – Central (501) and Southern (601) Model Domain.

The vertical limit of the groundwater system is generally defined by bedrock present beneath the High Plains Aquifer materials, either the Tertiary White River Group or Cretaceous Pierre Shale (Table 4-1) that is not jointed or fracture. The low-permeability Pierre Shale is simulated in small portions of the model domain.

4.3 Pumping and Recharge

As with much of the plains region, the lands in the CENEB model area were developed by European settlers for agriculture starting in the late 1800s. Much of the arable land was converted to farmland over the next 50 years, but with irrigation limited to riparian corridors where direct diversion of stream water into small ditches and canals was feasible. Organized irrigation districts with more extensive canal networks and reservoirs were developed starting in the late 1930s, with new projects continuing periodically until the completion of Calamus Reservoir on the Calamus River in 1987. The distribution and on-field application of streamflow away from the channel through these irrigation projects leads to deep soil percolation and recharge to the aquifer, at times, in excess of precipitation recharge. Over time, this increased recharge increased the baseflow component of streamflow, particularly in smaller streams where increases are more apparent.

Beyond the development of surface water irrigation districts, the most widespread change to agriculture in the CENEB area was the development of groundwater irrigation in the decades following the end of World War II. Based on the land use analysis performed for the project (Section 2.3), by 1960 irrigation infrastructure (a canal or well) was developed on roughly one million acres in the CENEB area from a mix of surface water and groundwater sources. Within 20 years, this had more than doubled to 2.5 million irrigable acres, with the increase coming almost entirely from new groundwater irrigation. The trend leveled out but continued to rise above 3 million acres (estimated for 2010) as center pivot technology facilitated irrigation on more variable terrain than was feasible with gravity and furrow type irrigation methods.

The conversion of native grassland or rangeland to row crops, the diversion of streamflow across the landscape, and extraction and application of groundwater at such a broad scale shifts the water budget of the aquifer and connected streams. Variable, dynamic, and sometimes competing factors contribute to the net recharge to the High Plains Aquifer under such an altered system. In arid areas or in times of drought, the consumptive use of applied (pumped or diverted) water and precipitation may lead to a net loss of water from the local or regional aquifer- stream system. This loss, evident as a decline in groundwater levels and streamflows, are mitigated by increased recharge and reduced irrigation requirements in wet years or by the targeted conjunctive use of surface and groundwater.

For the CENEB project, the combined complexity of variable climate and agricultural water use is simulated through the CropSim process. The CENEB CropSim analyses indicate an increase in variability of annual recharge that tracks the rise of groundwater use, creating the potential for more frequent imbalances between inflows to and discharges from the aquifer. CropSim estimated pumping and recharge are discussed further in Section 5.9.

4.4 Aquifer Parameters

Estimates of streambed conductivity, hydraulic conductivity, and specific yield in the Nebraska and South Dakota portions of the model domain are summarized in Table 4-2. The estimated values for Nebraska are the calibrated ELM values (Stanton et al., 2010), calibrated Sand Hills model values (Chen and Chen, 2004), and the digital database of parameters developed by J. Ayers for the Niobrara River Basin (Conservation and Survey Division, 2010); estimates for South Dakota are from the Rosebud Model (Long et al., 2003; Long and Putnam, 2010) and aquifer test results reported by Rahn and Paul (1975). The estimates of aquifer parameters presented in Table 4-2 were used to constrain the ranges used for model construction and calibration.

Table 4-2. High Plains Aquifer Parameters		
Parameter	Estimated Value Nebraska Portion of Model Domain	Estimated Value South Dakota Portion of Model Domain
Hydraulic Conductivity	5.48 to 107.15 ft/day ¹ 26.2 to 59.7ft/day ² (Ogallala) 98.4 ft/d to 436.4 ft/day ² (Alluvium) 1.75 to 198 ft/day ³ (Ogallala) 0.02 to 48 ft/day ³ (Arikaree)	0.1 to 84.4 ft/day ⁴ (Ogallala) 0.1 to 5.4 ft/day ⁴ (Arikaree) 42 to 75 ft/day ⁵
Specific Yield (dimensionless)	0.002 to 0.260 ¹ 0.036 to 0.27 (Ogallala) ³ 0.0015 to 0.226 (Arikaree) ³	0.02 to 0.06 ⁴ 0.02 to 0.06 ⁵
Streambed Conductivity	0.075 to 6.0 ft/day1	
SOURCES	¹ ELM, Stanton et al., 2010 ² Sand Hills Model, Chen and Chen, 2004 ³ Conservation and Survey Division, 2010	⁴ Rosebud Model, (Long et al., 2003; Long and Putnam, 2010) ⁵ Rahn and Paul, 1975

4.5 Sources and Sinks

Groundwater sources and sinks in the CENEB model domain are summarized in Table 4-3. Major sources and sinks include recharge, discharge of groundwater to streams, and groundwater pumping.

Table 4-3. Groundwater Sources and Sinks		
Sources	Sinks	
Underflow from the west	Underflow to the northeast toward the Missouri River	
Recharge	Underflow/Discharge to the south (Platte River)	
Canal leakage	Underflow to the east	
Stream leakage	Groundwater pumping	
	Discharge as baseflow to rivers and streams	
	Evapotranspiration	

4.6 Conceptual Water Budget

A conceptual, steady-state water budget for the CENEB model domain was developed prior to model construction to quantify inflows and outflows for the pre-1940 system. A conceptual water budget provides a point of comparison with model-calculated water budgets, and is used to impose constraints during model construction and calibration. Sources of groundwater into the CENEB model include recharge from precipitation and agricultural irrigation, underflow of water into the model domain from the west, stream leakage, and canal leakage. Groundwater leaves the model domain via underflow to the east, groundwater pumping, ET, and discharge to rivers and streams.

The starting point for the CENEB conceptual water budget calculation was preliminary CropSim runs that provided estimates of recharge (minus canal leakage) and pumping for the pre-1940 steady-state period. Additionally, Darcy strip analyses were performed to calculate underflow into and out of the model domain. These budget estimates were then compared to the calibrated, 1939 pseudo-steady-state budget from the ELM to develop a conceptual water budget for the CENEB model. Table 4-4 compares the conceptual, steady-state CENEB model water budget with the pseudo-steady-state ELM budget. A discussion of the individual components in the CENEB conceptual water budget follows.

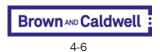
4.6.1 Underflow

Darcy strip analyses were performed to estimate steady-state underflow into the model across the western boundary, and underflow out of the model across the eastern boundary. Water levels from 1979 were used to calculate groundwater flow gradients: 11 ft/mile at the western boundary and 10 ft/mile at the eastern boundary. The flux across the boundary was calculated from the calibrated hydraulic parameters from the steady-state ELM model (Stanton et al., 2010). Underflow into the model area from the west was calculated to be approximately 35,000 acre-ft per year (AFY); underflow out of the model boundary to the east was calculated to be approximately 165,000 AFY (Table 4-4).

4.6.2 Recharge and Canal Leakage

Recharge in the model domain includes recharge from precipitation, agricultural recharge, canal leakage, and stream leakage. Precipitation recharge dominates the groundwater flow system water budget; a large portion of this recharge is in the Sand Hills, which cover approximately 55 percent of the CENEB model domain. Precipitation readily enters the coarse-grained, permeable soils in the Sand Hills; the thick unsaturated zone provides storage and prevents losses through evaporation (Chen et al., 2003). A comparison of the mean annual net recharge rate for the Sand Hills (greater than 4 inches [100 millimeters (mm)]) versus the mean annual net recharge rate of 1.14 inches [29 mm] for all of Nebraska (Szilagyi and Josza, 2012) provides an indication of the importance of this region to the aquifer system.

Agricultural recharge is the result of deep percolation of irrigation water applied to cropland. The volume of water entering the aquifer via agricultural recharge increases significantly through time, as it keeps pace with the rise in irrigated acreage.


A preliminary CropSim-derived recharge estimate of 3.75 million AFY for the Nebraska portion of the model was utilized as the starting point for the conceptual CENEB water budget. This preliminary CropSim value compares favorably to the ELM recharge at 4.01 million AFY. The CropSim recharge estimate was based on the water balance approach, as described in Section 4.4.

An independent estimation of recharge based on a water balance by Szilagyi and Jozsa (2012) for the Nebraska portion of the model provides a second point of comparison. Szilagyi and Jozsa (2012) updated previously published mean annual groundwater recharge rates in Nebraska, improving the methodology discussed in their previous paper (Szilagyi et al., 2003) by incorporating 1-kilometer resolution Moderate Resolution Imaging Spectroradiometer (MODIS) data into a water balance approach. In addition to MODIS, the approach uses GIS layers of land cover, land surface, groundwater surface, base recharge, recharge potential, and monthly climatic data. Datasets provided by Dr. Szilagyi (personal communication, 2012) were utilized to estimate recharge in the Nebraska portion of the CENEB model; the resulting value of 3.53 million AFY compares well to the ELM and conceptual CENEB recharge.

Estimates of recharge from CropSim and Szilagyi and Jozsa (2012) do not include canal leakage. Recharge in 1940 from canal leakage in the ELM was 77,000 AFY (Stanton et al., 2010). This water budget output from ELM was included in the conceptual recharge estimate for the CENEB water budget.

4.6.3 Pumping

Estimated groundwater pumping of 54,000 AFY was included in the conceptual CENEB budget for the pre-1940 period, derived from land use patterns in regions that utilized groundwater for irrigation (Section 2) and the net corn crop irrigation requirements for the state of Nebraska (NDNR, 2006). Pumping was not simulated in the ELM for the steady-state 1939 period; however, the volume of estimated pumping was an insignificant component of the water budget.

4.6.4 Evapotranspiration (ET)

ET in the CENEB model refers to the loss of shallow groundwater from streams and riparian areas. ET associated with agricultural practices is taken into account in the net recharge and pumping estimates from CropSim.

ET in the conceptual CENEB water budget was increased significantly over ELM levels due to:

- The large number of stream cells with adjacent riparian areas added to the model in the northern portion of the domain
- A review of the distribution of riparian areas (United States Fish and Wildlife Service [USFWS], 2012)
- The large potential evaporation rates calculated by Szilagyi and Jozsa (2012)

In many cases, potential evaporation rate exceeds the recharge rate. The total potential evaporation volume of approximately 12 million AFY in Nebraska (Table 4-4) far exceeds all model budget estimates, but serves to illustrate that shallow groundwater can be seriously impacted by ET. The increase of 41 percent in the CENEB conceptual ET for pre-1940 conditions versus ELM was considered plausible, given the larger model domain and the number of model cells that include riparian acreage. Note that this budget component was used to balance the water budget, in conjunction with stream inflows and outflows.

4.6.5 Discharge of Groundwater to Rivers and Streams

Surface water systems can either gain baseflow through discharge from the aquifer system or lose baseflow via infiltration. Within the model domain, there are both gaining and losing stream reaches; however, there is a net loss from the aquifer to the streams.

The Niobrara River and the Upper, Middle, and Lower Loup Rivers and their tributaries serve as a groundwater drain for the Sand Hills region. Soils in the Sand Hills are coarser grained than the surrounding areas, and, therefore, have a much greater rate of recharge. Minor amounts of precipitation reach the streams as overland runoff; thus, streamflow is maintained almost wholly by groundwater discharge (Nebraska Natural Resources Commission, 1982).

Along the upper reaches of the Loup River system, groundwater discharge has been estimated to account for 87 to 98 percent of the river's total flow (Nebraska Natural Resources Commission, 1982; Szilagyi et al., 2003; Chen and Chen, 2004; Peterson et al., 2008). Similarly, along the Niobrara River and its tributaries, streamflows are largely derived from groundwater discharge (Bentall and Schaffer, 1979, Soenksen et al., 2010). In the Elkhorn River Basin, Peterson et al. (2008) reported that 66 percent of the baseflow was derived from groundwater discharge.

Stream leakage into the aquifer is a minor CENEB budget component totaling 137,000 AFY. Consistent with the conceptual model, the conceptual water budget reflects a net loss of groundwater to rivers and streams (presented as net Streams OUT in Table 4-4). The net loss to streams totals 2.663 million AFY and compares very well to the ELM budget of 2.467 million AFY (difference of 8 percent).

4.6.6 Summary

The conceptual steady-state CENEB water budget of 4.703 million AFY reflects the conceptual model of the High Plains Aquifer system within the model domain. Total volume in the CENEB water budget is 12 percent higher than the ELM water budget due to the increased size of the CENEB model domain and the extent of the additional streams simulated. There are large differences between individual components, i.e., recharge, ET, and boundaries, which are attributed to the use of CropSim for the pumping and recharge inputs and the calculation of boundary inflows and outflows using a Darcy strip analysis.

	CENEB Conceptual Budget Pre-1940	ELM 1939 Pseudo- Steady-State Budget ¹	Preliminary CropSim Run ² (Nebraska Only)	Szilagyi and Jozsa (2012) (Nebraska Only)
		IN		
Storage		14		
Boundaries	165,000	90,434		
Recharge	4,401,000	4,009,476	3,753,000	3,528,149
Streams	137,000	94,430		
TOTAL Inflows	4,703,000	4,194,354		
		OUT		
Storage		12,606		
Boundaries	35,000	331,451		
Pumping	54,000		54,000	
Evapotranspiration (ET)	1,814,000	1,287,880		11,792,0003
Streams	2,800,000	2,562,053		
TOTAL Outflows	4,703,000	4,193,990		
Net Streams OUT	2,663,000	2,467,623		

¹Pseudo-steady-state simulation: includes storage.

²Method does not include canal leakage in the recharge estimate.

³Total potential ET using rates from Szilagyi (digital data provided in personal communication, 2012).

Units are AFY (acre-feet per year)

Section 5 Numerical Model Development

The CENEB numerical groundwater flow model was constructed based upon the conceptualization of the aquifer system presented in Section 4, utilizing the ELM structure. The starting point for hydraulic parameters was the calibrated ELM values; CropSim-derived estimates were utilized for groundwater pumping and recharge rates. Initial estimates for hydraulic parameters were modified during model development and subsequent calibration (Section 6). This section summarizes model specifications, model development, and the methods and assumptions used for expanding the model domain to the north. The numerical model specifications are presented in Table 5-1.

	Table 5-1. CENEB Model - Specifications
Model Area	Active Domain: 34,449 square miles
	22,047,270 acres
Software	MODFLOW-NWT-SWR1
	Groundwater Vistas Version 6.40, Build 3.0
Solution Method	NWT – Newton Method using xMD Solver
Units	Time: Days
	Length: Feet
Coordinate System	Model: State Plane, North American Datum of 1983 (NAD83), Nebraska, Feet
	Model Origin (lower left corner): X = 1,054,680 Y = 282,480 (no rotation)
Model Grid	195 rows x 255 columns
	Active Domain: 34,449 cells
	Model Grid is coincident with state of Nebraska 1-mile grid system
Cell Size	Uniform spacing: 1 mile x 1 mile
Simulation Time	72 Years
	Pre-1940: Steady State
	1940-2011: Transient
Stress Periods	359 stress periods, first stress period simulated as steady state
Layer Definition	Layer 1: High Plains Aquifer, unconfined
	Thickness: 27 to 1,176 feet
Hydraulic Conductivity	2.5 to 75.7 ft/day
Streambed Conductivity	0.008 to 0.75 ft/day
Specific Yield	0.002 to 0.260 (dimensionless)
Evapotranspiration	0.000033 to 0.010399 ft/day
Boundary Conditions	Constant Head Boundary: Platte River (south) and Missouri River (northeast)
	General Head Boundary: Portions of the western and eastern edge of model
	No-Flow Boundary: North model domain boundary; portions of the eastern and western edge of the model
Surface Water Interactions	Streamflow-Routing (SFR2) Package
	Streamflow-Routing: 5,227 cells

5.1 Computer Code Description

The computer code used to simulate groundwater flow for the CENEB model was MODFLOW-NWT, a modular, finite-difference, 3-dimensional groundwater modeling program. MODFLOW-NWT is a standalone program that uses the Newton method for solving non-linear problems (Niswonger et al., 2011). Groundwater Vistas[™] Version 6.40 Build 3 (Environmental Simulations, Inc., 2011) was used as the pre- and post-processor and was coupled with ArcGIS[™] (Esri, 2011) to facilitate the development of input files and analyses of model output. The generation of 2-dimensional gridded and contour data by geostatistical interpolation techniques (i.e., kriging) was performed using Global Mapper (Blue Marble Geographics, 2013) or Surfer® (Golden Software, Inc., 2008), both of which produce output that can be imported into the numerical model or GIS.

5.1.1 Computer Code Assumptions

MODFLOW-NWT uses a finite-difference numerical method for solving a form of the 3-dimensional groundwater flow equation. This technique essentially solves for head by discretizing the flow domain into a computational grid composed of blocks, with nodes at the center of the blocks. For the system of nodes, it is possible to write a series of finite-difference equations derived from the original groundwater flow equation. In general, the finite-difference approximation assumes that all hydraulic parameters, stresses, and inputs are constant (representing average conditions) over the area of a single cell and over the time elapsed during a stress period. Likewise, calculated head and groundwater fluxes are also averaged over the areal extent of a single cell. Implementing the model for a specific problem requires the definition of boundary and initial conditions, as well as estimates of key hydraulic parameters and hydraulic sources and sinks as a function of time.

5.1.2 Computer Code Limitations

Numerical solutions using MODFLOW-NWT are dependent upon the scale of the model grid, the time frame of interest, and the behavior of various model inputs and boundary conditions. For regional-scale applications such as the CENEB project, model results may have limited usefulness in investigating groundwater-surface water issues with 1) spatial scales smaller than a single cell or small grouping of cells, and 2) substantially varying groundwater stresses or inputs at a time scale less than a single stress period. In addition, the code is designed to represent changes in baseflow at time scales from months to hundreds of years. At smaller time scales, the code may not accurately simulate short-term transient surface water-groundwater interactions due to quickly changing streamflow conditions (Prudic et al., 2004). Furthermore, careful attention must be paid to head-specified inflow and outflow boundaries, as they are capable of providing unrealistic volumes of water to the domain, while still maintaining appropriate water level conditions. Additionally, extrapolation or interpolation of the model results over large time frames are subject to uncertainties inherent in long-term, transient, predictive model stresses.

5.2 Units and Coordinate System

The CENEB model utilizes linear units of ft and temporal units of days. All model features are georeferenced in the State Plane North American Datum of 1983 (NAD83), Nebraska projection system (Table 5-1).

5.3 Model Discretization and Layering

The CENEB model is a one-layer model based on the ELM aquifer geometry, which was extended northward (versus the ELM) to bring the northern tributaries of the Niobrara River as well as the Keya Paha River and Ponca Creek Basins into the active domain. The model has a uniform cell size of 1 mile

by 1 mile. The expansion area allows for a more complete evaluation of streamflow depletion scenarios in northern Nebraska. The CENEB model grid is consistent with the state of Nebraska 1-mile grid system.

5.3.1 Layer Top and Bottom

A layer top elevation representing land surface was incorporated into the CENEB model to replace the constant elevation from the ELM, using a 10-meter digital elevation model (DEM). The average land surface elevation calculated from the DEM was assigned to each model grid cell. While the ELM aquifer bottom was retained in its entirety, new aquifer bottom elevations were developed for the expansion area. The aquifer bottom elevations in the expansion area were estimated by interpolating bedrock elevation data from the USGS High Plains Aquifer Study (HPAS) (Gutentag et al., 1984) using the kriging method. Aquifer thickness was then calculated based on average land elevation and the newly kriged aquifer bottom.

Additionally, a check was run on constant head stages and stream bottoms. In locations where the aquifer bottom elevation was either below the constant head stage or below the stream bottom elevation, or that resulted in a thickness of less than 20 ft, the aquifer bottom was set by default to 20 ft below the constant head stage or stream bottom. These areas were then buffered and re-kriged to allow a smooth integration with the remainder of the aquifer bottom dataset.

5.3.2 Revisions to Layer Thickness

Based on initial model test runs, groundwater elevations were over-simulated in areas where the aquifer was exceptionally thin. Based upon a review of available USGS well databases, the aquifer is likely thicker than what was estimated from average ground surface elevation and the interpolated aquifer bottom surface derived from HPAS data. Consequently, in the northern portion of the model domain where the aquifer thickness was between 20 and 50 ft, the bottom elevation was decreased by 40 ft to provide a thicker flow zone. Where the aquifer thickness was between 50 and 90 ft, bottom elevation was decreased by 20 ft.

The aquifer bottom was also lowered slightly in the northeast corner of the domain near the Missouri River. In this area, elevations change rapidly across cells; thus, utilizing an average surface elevation in a 1-mile cell from the 10-meter DEMs resulted in bottom elevations that were higher than ground surface elevations in neighboring cells. Aquifer bottom elevations were decreased slightly in this area to rectify the problem.

The discretization of layer thickness in the northern and northeastern portions of the model domain was designed to establish a generalized flow regime in the expansion areas. Providing a thicker zone for local groundwater flow likely does not significantly change the flow volume simulated by the model but improves the model's ability to simulate realistic gradients. After adjustments, the total thickness of layer 1 ranged from 27 to 1,176 ft, with an average thickness of approximately 500 ft (Table 5-1).

5.4 Stress Periods and Initial Conditions

Stress periods in the CENEB model were defined such that the steady-state and transient model solutions were calculated sequentially in a single model run. This allowed the refinement of model stresses, inflows, and hydraulic parameters simultaneously for both the steady-state (pre-1940) and transient (1940 through 2011) timelines. The simulation period was discretized into a total of 359 stress periods. The first stress period is defined as a steady-state simulation, with the remaining 358 stress periods assigned to the transient simulation. Annual stress periods are simulated from 1940 through 1985. Beginning in 1986 and continuing through 2011, stress periods decrease to monthly intervals. Table 5-2 summarizes the stress period setup in the CENEB model; the correlation between model time and calendar time for all stress periods is provided as Appendix B.

	Table 5-2 Stress Period Timelines and Parameters				
Stress Period	Simulation	Time Simulated	Stress Period Length	Number of Time Steps	Time Step Multiplier
1	Steady State	Pre-1940		1	1
2-47	Transient	1940-1986	Annual	10	1.2
48–395	Transient	1987–2011	Month	3	1.2

Starting heads for the initial steady-state stress period were assigned as the top of layer 1 and allowed to drain until simulated head and fluxes met the prescribed convergence criteria. Model-calculated heads from the steady-state simulation were then used as the initial conditions for the transient simulation.

5.5 Model Boundaries

CENEB model boundaries are shown on Figure 5-1; model boundaries include no-flow boundaries, general head boundaries (GHBs), and constant head boundaries. No-flow boundaries were assigned to cells in areas where flow directions parallel model boundaries and groundwater neither enters nor leaves the model domain, or where the aquifer is not present. Groundwater levels in the simulation are kept constant at constant head boundaries through the addition or subtraction of the required flow within the cell. GHBs are allowed to vary in reference to a constant head estimate assumed to exist outside the model domain at a fixed distance. Thus the model estimates an amount of inflow to or outflow from the model domain based on the gradient between the GHB and the outside reference head.

Selected cells along the western and eastern edge of the CENEB model were assigned GHB conditions with the reference head estimated for a location 2 miles away from the active model boundary. These GHBs initially used head elevations based on the 1995 water table contour map developed by the Conservation and Survey Division at UNL (2003). This approach differs from the ELM, where constant head boundaries were used to simulate groundwater discharge either entering or leaving the model at these locations. The GHB cells on the western edge of the CENEB model generally coincide with the ELM constant head boundaries; however, on the eastern edge of the CENEB model, the GHBs cover a slightly greater area than ELM due to flow direction interpretations derived from the 1995 groundwater contour map. All CENEB constant head and GHBs were time invariant. Conductance values for the general head boundaries were adjusted during model calibration (Section 6).

Constant head boundaries were assigned to the southern and far northeastern areas of the model representing the Platte River and the Missouri River, respectively. Water level elevations for these constant head boundaries were defined using the minimum elevation within the model grid cell from a 10-meter DEM to represent groundwater discharge to the rivers. The constant head boundary along the southern edge of the model generally has the same footprint in both the CENEB model and the ELM, except for Lake McConaughy. In the ELM, Lake McConaughy was represented using a GHB whereas in the CENEB model, the lake is simulated using a constant head boundary. Constant head values were considered appropriate to capture a reasonable approximation of lake levels in a location along the boundary that is distal to the area of interest.

Model expansion of the CENEB model to the north resulted in the addition of 31 constant head cells to simulate aquifer flow out of the model to the northeast toward the Missouri River, as depicted on the 1979 and 1995 groundwater contour maps (Conservation and Survey Division, 1996; 2003).

5.6 Rivers and Streams

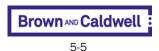
Rivers and streams located within the active CENEB model domain (not located on boundaries such as the Platte and Missouri Rivers) were represented using the Streamflow-Routing Package (SFR2)

(Niswonger and Prudic, 2010). The SFR2 package is capable of simulating unsaturated flow where the water table is disconnected from the stream network. However, for the CENEB model this feature was not implemented and it was assumed that any unsaturated zone flow between the streambed and the aquifer occurred over a length of less than a few meters such that the time required for seepage to reach the water table is negligible (Niswonger and Prudic, 2010).

The CENEB model purpose dictated the addition of new stream cells to the ELM structure, using a comprehensive approach to include stream segments with any observed or measured flow, in accordance with the requirements of the evaluation for which the model was built. The CENEB approach to the definition of stream cells was designed to capture the character of the drainage network as precisely as possible given the limitation of 1-mile grid cells. The guidelines below, and professional judgment, were used to simplify the model representation of the surface water system, particularly in areas with numerous and closely spaced tributaries. The analysis was performed in GIS, by overlaying the perennial reaches from the NHD (USGS, 2012) on the model grid.

Stream cells were added to the original ELM dataset based on the following guidelines:

- Include rivers, streams, and tributaries categorized as perennial in the NHD (USGS, 2012)
- Include tributaries longer than 2 to 3 miles
- Include stream reaches beyond the NHD perennial extent that were categorized as having measureable flow in Peterson and Strauch (2007); stream reaches that were reported as "no flow" in this study (i.e., 5 cubic ft per second [cfs] or less) should not automatically be excluded
- In the Niobrara River Basin where short, first-order tributaries (headwater streams, i.e., the smallest streams in the system, with no permanently flowing tributaries) are numerous, include every other tributary or every third tributary to provide a means for aquifer discharge in the region
- Extend the major stream segments (Niobrara, Snake, North Loup, Calamus, Middle Loup, Dismal, and South Loup Rivers) in the upstream direction to the headwaters, if located within the active model domain


New stream cells were added in the model expansion area to simulate the Keya Paha River, and Ponca Creek, and to include tributaries along the north mainstem of the Niobrara River. New stream cells were added to the Elkhorn and Loup River systems to encompass the headwaters and the larger tributaries. CENEB model stream cells are shown on Figure 5-1. A total of 5,227 stream cells are defined in the model domain, representing 7,415 miles of streams.

Stream cells were combined into stream segments in the CENEB model to facilitate parameterization. Depending on the settings specified in the SFR2 package, a segment is a group of cells that may have uniform or linearly changing properties such as stream width (Niswonger and Prudic, 2010). In the CENEB model, parameters values used to characterize the streambed are specified for each reach and do not linearly vary within a stream segment. Stream cell parameters were defined based on DEMs, ELM inputs, and analyses performed for this project, as discussed in the following sections.

5.6.1 Stream Width, Bottom Elevation, and Length

Stream widths were carried over from the ELM where available. For newly defined CENEB stream cells, NDNR performed an aerial photo review to estimate stream width in support of this project. Stream bottom was estimated as the minimum elevation within a model grid cell from a 10-meter DEM. Bottom elevations in the western and central portions of the model were adjusted for some stream reaches during model calibration (Section 6).

Stream lengths used the entire length of the digitized stream within a model cell based on the NHD and a GIS analysis. In areas where a small section of the stream strayed outside of a stream cell, this small

section was added to the stream cell length, thereby ensuring that the model represents the entire length of the streams and rivers.

5.6.2 Stream Slope, Thickness, and Depth

Stream slope was calculated as the difference between the minimum and maximum stream bottom elevation within a stream segment divided by the length of the segment. Where stream segments were greater than six reaches (6 miles) long, slope was calculated over two or more sections of that segment. For one-cell segments, an adjoining cell or segment was utilized for the slope calculation.

Streambed thickness was set to 1 ft; this parameter was not varied during model construction and calibration. However, the stream conductance term, which is based on streambed thickness and the material properties of the streambed, was adjusted during model calibration.

The SFR2 package was parameterized to simulate streams as wide rectangular channels (i.e., MODFLOW *icalc* variable = 1). This condition uses the Manning's equation to solve for stream depth during model simulations.

5.6.3 Stream Conductivity

Initial stream hydraulic conductivities were assigned the same hydraulic conductivity values as the ELM where the respective stream cells overlapped. For new stream cells, hydraulic conductivity values were initially assigned a value of 0.2 ft/day, a value representative of calibrated ELM stream cells; in areas where the streams or rivers overlie the Pierre Shale, hydraulic conductivity was assigned as 0.01 ft/day. Stream hydraulic conductivity was then adjusted during calibration.

5.6.4 Prescribed Baseflow

The headwaters of the Niobrara River are not contained within the active model domain. For all stress periods, an average representative baseflow discharge equal to 80 cfs was assigned to the stream cell where the Niobrara River enters the domain. This prescribed baseflow was estimated based on the long-term hydrograph for the *Niobrara River near Gordon NE* stream gage (06457500), located upstream, outside of the active model domain.

5.7 Hydraulic Parameters

Initial estimates of hydraulic parameters (i.e., hydraulic conductivity and specific yield) were imported into the CENEB model from the ELM, where available. Estimates of hydraulic conductivity and specific yield from the Conservation and Survey Division (2010) were utilized in the Nebraska portion of the expansion area, and HPAS data (Gutentag et al., 1984) were utilized in the South Dakota portion of the expansion area.

Additional sources for hydraulic parameters were evaluated for localized regions within the model domain, including the Rosebud model, which was developed for a small region in the northwest corner of the expansion area (Long et al., 2003; Long and Putnam, 2010); the Nebraska Sand Hills model (Chen and Chen, 2004); and a summary of hydraulic parameters for the Sand Hills region in Nebraska and South Dakota by Rahn and Paul (1975).

Estimates of hydraulic conductivity in the Sand Hills portion of the expansion area were compared to ELM values, and smoothed based on kriging and GIS to ensure consistency. Hydraulic conductivity estimates in other regions of the expansion area were assigned based on the range of values presented in the conceptual model (Section 4) which were then compared to the calibrated ELM values. Abrupt changes in these estimates were smoothed, as appropriate, or retained if warranted based on the stratigraphy (i.e., Pierre Shale). These initial hydraulic conductivity values were adjusted during CENEB

model calibration; the final calibrated range of hydraulic conductivity values are presented in Table 5-1 and on Figure 5-2.

Estimates of specific yield in the CENEB model were based on ELM values, and on published data sources for the expansion area. The results were evaluated to ensure consistency, and smooth the transition into the expansion area. The distribution of specific yield estimates in the CENEB model domain is shown on Figure 5-3. These values were not varied during calibration.

5.8 Evapotranspiration (ET)

ET processes are simulated both with CropSim and with MODFLOW for the CENEB model. CropSim simulates ET from the land surface and soils as a result of precipitation and applied irrigation water – it does not explicitly consider shallow groundwater sources to ET; the land surface ET processes are incorporated into the pumping and recharge estimates derived from CropSim.

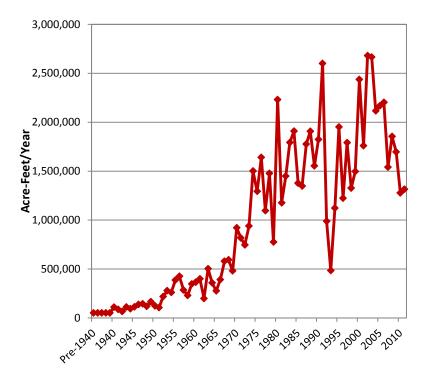
MODFLOW simulates ET as discharge of near-surface groundwater that can be considered to result from phreatophyte and riparian vegetation water use (not included in CropSim) and discharge from shallow wetlands and Sandhill lakes. Initial ET rates in the CENEB model relied on calibrated ET rates from the ELM; however, the spatial distribution of ET differs between the two numerical groundwater models as described below.

To produce a spatial distribution of ET in the CENEB model, the National Wetlands Inventory (NWI) database from the United States Fish and Wildlife Service (USFWS, 2012) was reviewed to identify wetlands within the model domain. The NWI database is a repository for the extent, status, and approximate location of current and historical wetland mapping projects, and is available in GIS format, by state. The Nebraska and South Dakota NWI files were downloaded in 2012 and utilized to identify model grid cells where a minimum of 640 acres (7 percent of the cell) was characterized as wetlands. These cells were retained for assigning ET rates in CENEB.

Additionally, infrared imagery for CENEB stream reaches was reviewed to determine the health and extent of vegetation in riparian areas (Esri, 2013). ET rates were not prescribed along the streams where vegetation was not robust (i.e., certain reaches in the Sand Hills). On smaller order tributaries (i.e., smaller streams) where vegetation appeared healthy, ET rates were assigned only to the cell containing the channel node. Along higher order stream networks, a 0.5-mile buffer was applied to streams, and cells that intersected the buffer zone were also assigned ET rates.

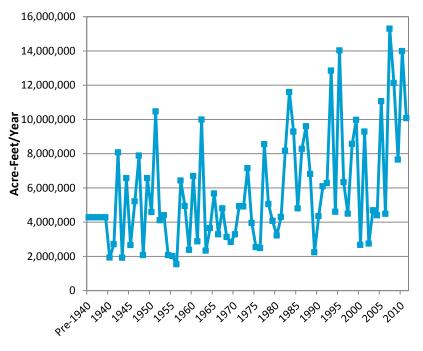
Once model cells requiring simulation of ET were identified, rates were assigned by locating the closest ELM cell where ET was prescribed and assigning that rate to the respective CENEB model cell. Cells along the Niobrara River segments that were not simulated in the ELM were assigned a uniform ET rate consistent with the calibrated ELM values for the Niobrara River. Similarly, the Keya Paha River and Ponca Creek stream cells were assigned ET rates in the same range as the Niobrara River. This approach maintained the general increasing trend in ET rates from north to south in the model domain (Figure 5-4).

During model calibration, the spatial extent of prescribed ET cells along the lower sections of the Elkhorn River was slightly expanded. Otherwise, the spatial distribution of ET in the CENEB model was not revised during model calibration. Final ET rates for the CENEB model are shown on Figure 5-4.


5.9 CropSim-Derived Pumping and Recharge

The CENEB CropSim process produces an estimate of annual groundwater pumping and recharge for the 1940–1985 period and monthly estimates for the remaining simulation period from 1986 through 2011. Graph 5a shows the increase in annual groundwater pumping through time, reflecting the upsurge in irrigation infrastructure installation throughout the model area starting in the 1970s.

Superimposed on this increasing groundwater extraction trend are the effects of annual climatic variation, notably the decreased pumping in the wet years of the early 1990s and the peak pumping in the drought years of the early 2000s. Figure 5-5 shows that this pumping tends to be concentrated in the dissected plains to the south and east of the Sand Hills, within the Platte River valley, and on the flatter lands along and between the Elkhorn River and the lower Niobrara River. The figure also shows that the land use and CropSim datasets captured the pumping that occurs in more dispersed locations throughout the Sand Hills and on the flat uplands along the Niobrara River.


All pumping simulated by the CropSim process was assumed to occur within and fully penetrate the same portion of the High Plains Aquifer simulated in the groundwater model. This assumption is considered valid at the regional scale of the CENEB model but may not necessarily hold at local scales, particularly where the High Plains Aquifer thins and an underlying unit may provide adequate supply for a single well. Wells likely do not fully penetrate the entire aquifer in areas of exceptional thickness, as in the Sand Hills area. However, as pumping is relatively minimal in this area, the effect of partial penetration on simulated regional heads and baseflow discharge was expected to be insignificant.

Graph 5a. Groundwater Pumping in the CENEB Model – Pre-1940 through 2011.

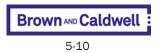
The time series in Graph 5b depicts annual recharge within the CENEB model domain. The year-to-year variation captures wet and dry cycles superimposed on the aggregate effects of farming and land use. The use of CropSim to simulate deep percolation as recharge influx to the groundwater model assumes instantaneous vertical transport through the vadose zone. This assumption may be less valid for short stress periods (days to weeks) and thick vadose zones dominated by fine sediments. For the CENEB model, with annual and monthly stress periods and relatively shallow groundwater, this assumption is expected to be valid for evaluation of model responses over regional areas and multi-year time periods.

Graph 5b. Total Recharge in the CENEB Model – Pre-1940 through 2011.

5.10 Canal Recharge

Because CropSim simulations do not include seepage losses to groundwater from irrigation canals, CropSim recharge rates were adjusted to incorporate canal leakage. The adjustment was made by directly adding ELM canal leakage rates (Stanton et al., 2010) to CropSim recharge rates in the appropriate model cells for simulation years 1940 through 1985. For simulation periods from 1986 through 2011, annual ELM canal leakage rates were modified to account for monthly stress periods in the CENEB model. This revision was performed by calculating the annual canal leakage volume per cell in the ELM model and then calculating the rate required to apply the same volume over an irrigation season spanning from May through September. Monthly canal seepage rates were then added to monthly CropSim recharge rates in the appropriate model cells. Finally, the ELM model canal leakage rates only covered a time period through 2005. In the CENEB model, 2005 annual ELM canal recharge estimates were used to calculate monthly canal seepage rates in the CENEB model for years 2006 through 2011. This method of incorporating canal recharge into the CENEB model was utilized to represent losses to groundwater from all canals within the model domain except the laterals in the Ainsworth Irrigation District (AID) in the northern portion of the CENEB model. NDNR estimated canal recharge for the AID laterals (described below); losses to the aquifer from the main AID canal were carried over from the ELM.

The AID in Brown County and a small portion of Rock County is served by water from Merritt Reservoir. The reservoir was completed in May 1964 with first deliveries to lands in the AID occurring in the summer of 1965. The water released from the reservoir during irrigation season is diverted downstream from the release point (NDNR gage 00001000) and travels eastward through approximately 53 miles of concrete-lined main canal. At the end of the lined canal there are roughly 170 miles of unlined laterals that deliver water to fields. The process of delivering water though the AID system results in seepage losses that are not accounted for in the CropSim estimates of recharge. To account for this, losses from the main canal were carried over from the ELM, and an additional dataset of estimated seepage losses



from laterals was created for the portion of the model period over which the district has been operational, 1965 through 2011.

The total volume of seepage water was calculated as a percentage of the volume diverted over each month (for 1986 through 2011) or year (for 1965 through 1985). This percentage, or "loss factor," was set at 0.35, meaning that 35 percent of the water diverted was lost to seepage over the given time period. This value is within the range of similar loss factors observed on other canal systems in the state.

The total seepage volume was then distributed to model cells containing laterals using the ratio of lateral length within a cell to the total length of all laterals in the system. This assumes that all sections of the lateral system leak water equally and in proportion to the amount of water diverted. This assumption may not hold at very small time increments but is reasonable over the longer term.

The resulting distributed recharge datasets included additional recharge rates for each cell for every stress period in the model. The AID canal recharge estimates were then added to the base recharge inputs from CropSim, and canal recharge carried over from the ELM. Recharge rates representing AID lateral losses were further evaluated during calibration.

Section 6 Calibration

The calibration exercise provides confidence that the model is capable of simulating known groundwater system responses based on historical observations, and is performed prior to using the model for predictive simulations. To facilitate calibration, the stress period design incorporates an initial steady-state simulation (stress period 1) representing long-term average conditions prior to 1940, that is followed directly by the transient stress periods (2 through 359) representing changes in the groundwater system from 1940 through 2011. This functionality ensures that parameter changes made during the transient calibration exercise are automatically included in the steady-state trials, eliminating any disconnect between the steady-state and transient models.

6.1 Calibration Approach

Calibration is the process of modifying model parameters within a fixed ranged of reasonable estimates to improve the match between the predicted and observed hydraulic heads, baseflow, and other relevant hydrogeologic data. These observed data are referred to as calibration "targets." Initial estimates for hydrogeologic parameters are varied within an observed or estimated range of values to improve the model's ability to simulate these targets.

The range of plausible estimates for hydrogeologic parameters provides constraints on the calibration exercise (1) to ensure that inputs remain defensible based on known conditions within the aquifer and (2) to limit the non-unique nature of the model results to a set of realistic input conditions. The model variables adjusted during calibration may include hydrogeologic parameters such as hydraulic conductivity and streambed conductance, as well as prescribed inputs such as recharge and ET rates.

The strategy in a transient calibration where hydraulic stresses or boundary conditions are changing is to match calibration targets which represent snapshots of the hydrogeologic system through time. Both qualitative and quantitative methods of comparison were used to assess the ability of the CENEB model to simulate observed historical conditions.

The standard of practice in calibration is to identify constraints and select calibration targets early in the modeling process. Constraints were presented in the conceptual model (Section 4) and include ranges for hydraulic parameters and specific components of the conceptual steady-state water budget. The calibration targets were selected in the early stages of model development and consist of observed (field-measured) water levels and calculated stream baseflow (NDNR, 2012) through time.

Model parameters and stresses that were varied and tested during model construction and calibration of the CENEB model included: horizontal hydraulic conductivity, natural and agricultural recharge, streambed conductance, canal recharge, ET, general head boundary conductance, and constant head magnitudes. Although all model parameters and stresses were evaluated during the model construction and calibration, the CENEB model was primarily calibrated to hydraulic conductivity, ET, and recharge from both natural and agricultural sources.

6.1.1 Goals of Calibration

The calibration process was accomplished by moving from qualitative to quantitative assessments of the model-simulated heads and baseflows. Initially, hydraulic parameters were adjusted to produce the general flow directions and gradients for steady-state and transient periods. This step relied on the

conceptualization of the system, understanding of the geology and hydrogeology, professional judgment, and assumptions. The primary goal of the qualitative calibration was to match the observed flow regime, as defined by the 1995 water level contour map (Conservation and Survey Division, 2003) and simulate general trends in groundwater-surface water interactions, such as a total net discharge to the surface water system from the aquifer. Localized variations in the model-simulated versus observed water level contours were deemed acceptable; however, the generalized flow regime and the influences of the river systems on the flow regime needed to match field observations. The second goal of the qualitative calibration was to match the general trends observed in both head and baseflow hydrographs. Once the flow directions and general hydrograph trends approximated the generalized flow regime through time, the calibration process expanded to include quantitative evaluations based on calibration targets.

During calibration, a residual is calculated to assess the "fit" of the model-calculated (or simulated) targets to those actually observed. The residual is the observed (or field-measured) value minus the simulated value. Positive residuals indicated that model values are too low, and negative residuals indicate that model values are too high, as compared to observed conditions. A residual value of 0 represents a perfect fit between the simulated and observed values. The goal of the calibration is to minimize statistical properties of the residuals while remaining within the acceptable range for water budget components, hydraulic parameters, and flow regime requirements.

Plotting the residuals on a map showing the simulated water level contours provides an indication of the spatial distribution of error and helps guide the calibration process. Trends in the distribution of error, such as clusters of values that are all too high or too low, indicate spatial bias.

Calibration statistics based on the residual are used as a quantitative measure of the ability of the model to match calibration targets. Calibration statistics that were used to evaluate the calibration included:

- Mean Error (ME) the arithmetic average of all residuals, which provides an indication of bias
- Mean Absolute Error (MAE) the arithmetic average of the absolute value of the residuals, which provides a better indication of the average magnitude of residual error than the ME
- Root Mean Squared Error (RMSE) the square root of the average of the squares of the residuals (also conceptualized as generalized standard deviation), which provides a useful measure of the variability of the error by adding statistical weight to larger errors
- Standard Deviation (SD) the arithmetic standard deviation of all residuals, providing a measure of the spread, or magnitude, of residual errors
- Minimum Residual the lowest residual (negative), indicating the largest difference between the simulated and observed values, where the model value is too high
- Maximum Residual the highest residual (positive), indicating the largest difference between the simulated and observed values, where the model value is too low
- Total Number of Observations a count of the number of observations available for model calibration
- Range in Observations the difference between the highest and lowest observed head in the aquifer, which provides a measure of the total hydraulic gradient across the model domain
- Scaled MAE MAE as a percent of the total range in head or baseflow, which provides a measure of how well the model simulates the total hydraulic gradient and the variation in stream baseflow across the model domain
- Scaled RMSE RMSE as a percent of the total range in head or baseflow, which provides additional weighting to larger residuals when estimating how well the model simulates the total hydraulic gradient and the variation in stream baseflow across the model domain

When the ratio of the MAE to the range of observed head values in the system is small, discrepancies between simulated and observed values comprise only a small part of the overall simulated model

response (Anderson and Woessner, 1992). One of the goals of the quantitative calibration was that the MAE and RMSE of the head residuals should be less than 2 percent of the total head change across the model for any given calibration period (Scaled MAE or RMSE). As total head change across the model is 2,696 ft, the MAE and RMSE should be less than 54 ft.

Similarly, the MAE of the baseflow residuals should be a small percentage of the total range in baseflow; a goal of 5 percent was set for the scaled baseflow MAE as well as the scaled baseflow RMSE. The goals for the baseflow residuals are slightly higher than the goals for the head residuals because of the large variability in observed baseflow values for individual gages and the range in observations overall, from a low of 0 cfs to a high of 3,438 cfs. Statistics for each of the main river systems were calculated, and a close review of key baseflow hydrographs was performed for the Niobrara, Elkhorn and Loup Rivers at the gages representing baseflow out of the model near the eastern boundary.

Throughout the calibration process, the numerical minimization of residuals was balanced with the overarching qualitative goal of achieving a reasonable representation of the flow regime and the interactions between surface water and groundwater.

6.2 Adjustments to Model Parameters/Inputs during Calibration

6.2.1 CropSim – Iterative Calibration Process

Agricultural pumping and recharge (excluding canal recharge) were prescribed model inputs based on CropSim (Section 4.4). Because CropSim simulates all processes related to precipitation, runoff, infiltration, crop water use, and aquifer recharge for agricultural as well as rangeland and undeveloped land use types, revisions or adjustments to any input resulted in a complete revision of pumping and recharge inputs for the CENEB model. This holistic approach to the development of pumping and recharge inputs also ensured that the two most important prescribed model inputs were always in balance.

The initial CropSim-generated pumping and recharge were imported into the CENEB model and evaluated to identify areas needing improvement, and then a new CropSim run was performed. This iterative process was repeated four times during the CENEB model calibration; changes made to CropSim included variations in input parameters and general model improvements, as described in Table 6-1.

	Revisions		
CropSim Version	(versus Original Version)	Author	Notes
Run001	Original version	NDNR	Initial run utilizing the original version of the RSWB Suite and general irrigation practice and coefficient zone assumptions
Run002a	Code Improvement	The Flatwater Group	Employed an updated version of the RSWB that included improvement to the calculation of ET gain. The new version also decreased run time and discretized intermediate output data. No intentional changes were made to the recharge-only those changes incidental to code revision.
Run003	Parameters Reorganization	The Flatwater Group	Global but minor adjustments targeted at groundwater model calibration; reorganized the output files as follows: 1940-1985 annual, 1985-1999 monthly, and 2000-2010 monthly
Run004	Parameters Model Improvement	The Flatwater Group	Reprocessing of the distributed CropSim data. Additional weather stations were added to fill in spatial gaps. Malfunctioning weather station were removed when apparent. Actual weather data was used to produce the CropSim data for the years 1940-1949 as opposed to copying the information available in 1950. The model was also extended through 2011. The predevelopment CropSim results were created using a conglomerate of the weather from each station in its median precipitation year (1951-2011).

Brown AND Caldwell

Streams were represented in the model using the SFR2 package, which allows simulation of both stream baseflows and groundwater-surface water interactions. Flow across the streambed is simulated using a form of Darcy's law that is defined by the following equation:

$$Q = \frac{K * L * W}{D} (h_s - h_a)$$

where *Q* is volumetric flow between the stream and the aquifer (ft³/d), *K* is the hydraulic conductivity of the streambed sediments (ft/day), *L* is stream length (ft/day), *W* is stream width (ft), *D* is streambed thickness (ft), h_s is head in the stream (ft), and h_a is head in the aquifer (ft) (Prudic et al., 2004).

Early versions of the CENEB model underestimated baseflows along certain stream lengths. To increase simulated baseflows, variables comprising the conductance term (K L W / D) were adjusted; however, baseflow exhibited very little sensitivity to conductance parameters.

Initial stream bottom elevations were assigned using the minimum 10-meter DEM elevation value that occurred within a model grid cell (1 mile x 1 mile). A decrease of 15 ft or less was considered an acceptable adjustment to account for error in stream bottom elevation, given that DEM minima may not accurately capture actual streambed elevation within a 1-square-mile model cell. To improve simulated stream baseflow conditions, stream bottom elevations were decreased by between 5 ft and 12 ft in the following basins: the Snake River (7 ft), Gordon Creek (7 ft), Schlagel Creek (7 ft), Fairfield Creek (5 ft), Plum Creek (5 ft), Dutch Creek (5 ft), Long Pine Creek (7 ft), Short Pine Creek (7 ft), Bone Creek (7 ft), the Middle Loup River above the confluence with the Dismal River (8 ft), the Dismal River (12 ft), Wild Horse Creek (12 ft), and the Calamus River (10 ft).

6.2.3 Specific Yield and Specific Storage

Specific yield (S_y) values from the ELM Phase II model were imported into the CENEB model. In the expansion area, S_y was initially defined based on nearby values from the ELM Phase II with the lowest values assigned to the outcrops of the Pierre Shale. S_y was adjusted in the expansion area during initial model construction; this parameter was not adjusted during model calibration.

Specific Storage (S_s) values from the ELM were not transferred to the CENEB model because of the approach MODFLOW-NWT uses when simulated heads are above ground surface. Specifically, when using the Layer Property Flow Package in MODFLOW-NWT, the code implements a storage formulation using S_s whenever the top layer is defined as convertible and simulated heads are higher than ground surface. Under this condition, S_s is multiplied by cell thickness as part of the solution used to simulate internal groundwater flow (Harbaugh, 2005).

Groundwater levels simulated near or slightly above the ground surface in the CENEB model represent areas where the groundwater table is near the surface and where discharge to local surface water is occurring. Flooded areas simulated with the model are assumed to be within the general error of the model. Since a simulated water table above ground surface in the CENEB model does not represent confined flow conditions, the S_s parameter was assigned a value that returned S_y whenever the water table was simulated above land surface. This was achieved by assigning S_s values equal to the S_y divided by aquifer thickness at each respective cell. Adjustments to S_s result in the same groundwater flow solution under both flooded cell and water table condition scenarios.

6.2.4 Canal Recharge

Canal recharge rates from the ELM Phase II model were used as a starting point for simulating canal losses to groundwater, except for leakage from the AID laterals; initial estimates of AID lateral recharge were based on the assumption that 35 percent of total diversions would be lost to seepage over the

simulation time period. Adjustments to AID canal recharge were made during calibration, resulting in an overall increase in lateral canal recharge equivalent to approximately 43 percent of total diversions. The adjusted rates produced results in the groundwater model consistent with historical observed head and baseflow responses.

6.3 Water Level Targets

The complete database of water levels for the CENEB model domain consists of 232,695 water levels for 7,922 wells, spanning the time period from 1905 to 2011. Well locations in the model domain are shown on Figure 6-1. This large dataset was heavily concentrated in the eastern portion of the model, where clusters of observation points could greatly bias the calibration statistics. It was recognized that changes in the residual statistics would be relatively minor if this entire dataset were used for calibration, even for significant changes in model inputs. A smaller subset of this database was deemed more desirable for the purpose of providing meaningful calibration targets and residuals.

The selection of water level targets for the CENEB model calibration included three steps:

- Identification and selection of steady-state targets
- Identification and selection of specific years with adequate spatial coverage to minimize bias
- Selection of wells with long-term hydrograph datasets

6.3.1 Steady-State Water Level Targets

Relatively few water levels were available for the pre-1940 period in the CENEB model domain, particularly in South Dakota; however, given the relatively undeveloped nature of the land within the model domain and the stability of the groundwater flow system over time, it was deemed appropriate to utilize water level measurements from later years as representative targets to calibrate the pre-1940 steady-state simulation.

The steady-state water level targets for the CENEB model include water level data from 1905 through 1940 in the Nebraska portion of the model. The earliest water level measurement in the database for the South Dakota portion of the model was in 1953; select data through 1960 were used to represent steady-state conditions to supplement coverage in this region.

Initially, the number of targets for the steady-state time period totaled 472 records. The number of targets was reduced to eliminate data clusters via a GIS-based analysis: wells with similar water levels that were in close proximity to each other were thinned, and multiple measurements for a single location were reduced to a single target that was representative of the pre-1940 time period. Professional judgment was used to select wells and measurements to be used in the final steady-state water level target dataset, shown on Figure 6-2; a total of 121 targets were used in the steady-state CENEB model calibration (Table 6-2).

Table 6-2. Summary of Water Level Targets – CENEB Model					
Year	Simulation	Stress Periods	Time Step	Number of Targets	
Pre-1940	Steady State	1	1	121	
1946	Transient	8	10	195	
1964	Transient	26	10	440	
1976	Transient	38	10	1,042	
1985	Transient	47	10	1,091	
2000	Transient	216-227	3	978	
2011	Transient	348-359	3	868	
Sub-Total				4,735	
Long-Term Water Level Hydrographs	Multiple		21,508		
TOTAL TARGETS ¹ 24,140					

¹Total number of targets in the long-term hydrographs is 21,508; of these, 2,103 are included in the steady-state or specific year counts.

6.3.2 Transient Water Level Targets for Specific Years

A summary of the total number of water level observations for each year in the model simulation was reviewed as the first step in the selection of transient water level targets. To assess the spatial distribution of these potential targets the model domain was divided into 12 zones based on latitude, longitude, and the Nebraska-South Dakota state line (Figure 6-3), and the number of potential targets per zone was summed for each year of the model timeline. Based on this analysis, the first year with adequate spatial coverage in all zones was 1946. The spatial distribution of targets improved and the number of potential targets increased substantially in the late 1970s, and 5 additional years were added to the transient calibration target dataset, as shown in Table 6-2. The optimal time between these calibration periods was defined as approximately 10 years; however, a longer time span was acceptable for earlier time periods as the datasets were more limited prior to the 1970s. Including the pre-1940 period, seven specific calibration periods were identified (Table 6-2).

For each year, the water level target dataset was reviewed according to specific guidelines (listed below) and professional judgment, and the dataset was thinned to remove bias. The approach to data reduction took into account that the CENEB model simulates annual stress periods through 1985, then monthly stress periods from 1986 through 2011. Guidelines included the following:

- In all cases, the goal for the spatial distribution of water level targets was one well per township, selecting wells close to the center of the township.
- For annual stress periods and wells with multiple measurements during a single year, water levels from October, November, or May, in that order, were preferred, as those time periods were considered to be more representative of an annualized water level and less influenced by seasonal pumping stresses. Only one record was used for each year.
- For monthly stress periods, wells with monthly or quarterly water levels were preferred in order to capture seasonality. Multiple measurements in a single month were reduced to a single target by using the measurement closest to the month end.

This approach resulted in a spatial and temporal distribution of water level targets that provided meaningful statistical measures of calibration.

6.3.3 Long-Term Hydrographs

To fully assess the model's ability to capture trends and assess seasonal changes in groundwater conditions, a total of 43 wells with long-term water level measurements were added to the target dataset. Two to three wells within each of the 12 zones were selected for long-term hydrograph targets based on well location, period of record, and trends in the individual hydrographs. The locations of the 43 wells used for long-term hydrograph calibration are presented on Figure 6-3. The total number of calibration targets from these hydrographs is 21,508 (Table 6-2).

6.4 Baseflow Targets

Estimates of the groundwater contribution to streamflow (baseflow) over time were assembled for the 74 gage points listed in Table 6-3 with the spatial distribution shown on Figure 6-4.

Numerous methods exist for estimating baseflow in a river or stream, all relying on various assumptions, quantity of data, and quality of data. The approach used for developing the baseflow values for the CENEB project involved a multi-step process that included: 1) obtaining data from USGS and NDNR sources for stream gages with significant periods of record throughout the Niobrara, Loup, and Elkhorn River Basins (see Section 2.6); 2) adjusting gage records to account for the impact of canal diversions where applicable in the Loup River Basin; 3) applying an automated, one-parameter digital filter to the daily gage records; and 4) aggregating these values as appropriate for the steady-state, annual, and monthly model stress periods.

Daily stream gage data for the available period of record within the range from 1890 to 2011 were downloaded from the USGS National Water Information System web server and the NDNR internal gage databases. The data download was limited to those gages within the CENEB model boundary but outside of the Platte River watershed boundary. Gage data for canal systems that divert water from CENEB area rivers outside the Platte River were also downloaded. A list of canal gage stations used is provided in Table 6-4.

Baseflow separation methods presume a full, natural hydrograph for proper application. In portions of the Loup River Basin, water is diverted from channels during the irrigation season to supply canals and reservoirs, modifying the natural flow that normally would have reached downstream gages. To account for this, the daily canal diversion records were added to the daily gage records at stations downstream of canal diversions to restore the in-channel flow budget according to the following:

Natural Hydrograph $(Q_{nat}) = Gage Flow (q_{gage}) + Canal Diversions - Canal Returns$

In the Loup River Basin, canal systems generally have minimal returns (i.e., spills of flowing water from the end of a canal back into a river or stream) and thus gage data for use in the mass balance equation above were sparse or non-existent.

	Table 6-3. USGS Stream Gages Used as Baseflow Target Locations – CENEB Model				
Gage ID	Name	Period	of Record	Number of Observations	
Gage ID	Name	Start	End		
6453500	Ponca Creek At Anoka	Dec-1950	Sep-1994	141	
6453550	Ponca Creek At Lynch	Dec-1961	Dec-1964	4	
6453600	Ponca Creek At Verdel	Dec-1958	0ct-2011	339	
6458500	Bear Creek Near Eli	Dec-1948	Dec-1953	6	
6459000	Niobrara River Near Cody	Dec-1948	Dec-1957	10	
6459175	Snake River At Doughboy	Dec-1982	Nov-2011	316	
6459200	Snake River Above Merritt Reservoir	Dec-1963	Dec-1981	19	
6459500	Snake River Near Burge	Dec-1947	Nov-2011	329	

Brown AND Caldwell

Table 6-3. USGS Stream Gages Used as Baseflow Target Locations – CENEB Model				IEB Model
Gage ID	Name	Period	of Record	Number of Observation
6460900	Minnechaduza Creek Near Kilgore	Dec-1958	Dec-1974	17
6461000	Minnechaduza Creek At Valentine	Dec-1948	Sep-1994	143
6461500	Niobrara River Near Sparks	Dec-1946	Nov-2011	352
6462000	Niobrara River Near Norden	Dec-1953	Sep-1986	40
6462500	Plum Creek At Meadville	Dec-1948	Sep-1994	142
6463080	Long Pine Creek Near Long Pine	Dec-1980	Mar-1991	69
6463500	Long Pine Creek Near Riverview	Dec-1948	Nov-2011	349
6463720	Niobrara River At Mariaville	Jan-1986	Sep-1991	69
6464100	Keya Paha R Near Keyapaha	Jan-1986	Oct-2011	311
6464500	Keya Paha R At Wewela	Jan-1986	Oct-2011	311
6464900	Keya Paha River Near Naper	Dec-1958	Nov-2011	340
6465000	Niobrara River Near Spencer	Dec-1941	Aug-2001	234
6465310	Eagle Creek Near Redbird	Dec-1979	Oct-1991	77
6465440	Redbird Creek At Redbird	Dec-1981	Sep-1994	110
6465500	Niobrara River Near Verdel	Dec-1959	Oct-2011	338
6465680	North Branch Verdigre Creek Near Verdigre	Dec-1980	Sep-1992	86
6465700	Verdigre Creek Near Verdigre	Apr-2002	Oct-2011	115
6466400	Bazile Creek At Center	Sep-2002	Oct-2011	98
6466500	Bazile Creek Near Niobrara	Jan-1986	Oct-2011	227
6775000	Middle Loup River At Seneca	Dec-1948	Dec-1953	6
6775500	Middle Loup River At Dunning	Dec-1946	Nov-2011	352
6775900	Dismal River Near Thedford	Dec-1967	Nov-2011	331
6776000	Dismal River Near Gem Nebr	Dec-1947	Dec-1953	7
6776500	Dismal River At Dunning	Dec-1946	Sep-1995	157
6777000	Middle Loup River Near Milburn	Dec-1952	Dec-1964	10
6777500	Middle Loup River At Walworth	Dec-1941	Dec-1960	20
6778000	Middle Loup River At Sargent	Dec-1957	Dec-1969	13
6779000	Middle Loup River At Arcadia	Dec-1962	Sep-1994	129
6780000	Middle Loup River At Rockville	Dec-1962	Dec-1975	10
6782000	South Loup River Near Cumro	Dec-1946	Dec-1953	8
6782500	South Loup River At Ravenna	Dec-1941	Dec-1975	26
6783000	Mud Creek Near Broken Bow	Dec-1950	Dec-1953	4
6783500	Mud Creek Near Sweetwater	Dec-1947	Nov-2011	351
6784000	South Loup River At Saint Michael	Dec-1944	Oct-2011	353
6784300	Oak Creek Near Loup City	Dec-1953	Dec-1964	11
6784500	Oak Creek Near Dannebrog	Dec-1950	Dec-1957	8
6784800	Turkey Creek Near Dannebrog	Dec-1966	Nov-2011	324
6785000	Middle Loup River At Saint Paul	Dec-1962	Oct-2011	335
6785500	North Loup River At Brewster	Dec-1946	Dec-1951	6
6786000	North Loup River At Taylor	Dec-1947	Nov-2011	351
6787000	Calamus River Near Harrop	Dec-1978	Aug-1997	149
6787500	Calamus River Near Burwell	Dec-1941	Dec-1985	45
6788500	North Loup River At Ord	Dec-1952	Nov-2011	346
6788988	Mira Creek Near North Loup	Dec-1980	Nov-2011	318
6789000	North Loup River At Scotia	Dec-1960	Dec-1969	23

6-8

Table 6-3. USGS Stream Gages Used as Baseflow Target Locations – CENEB Model				
Gage ID	Name	Period	of Record	Number of Observations
6789500	Davis Creek Near Cotesfield	Dec-1949	Dec-1958	10
6790500	North Loup River Near Saint Paul	Dec-1947	Nov-2011	351
6791000	Spring Creek At Cushing	Dec-1949	Dec-1953	5
6791500	Cedar River Near Spalding	Dec-1945	Nov-2011	349
6791750	Cedar River At Primrose	Dec-1960	Dec-1964	5
6791800	Cedar River At Belgrade	Dec-1960	Dec-1965	6
6792000	Cedar River Near Fullerton	Dec-1941	Nov-2011	357
6792500	Loup River Power Canal Near Genoa ¹	Dec-1943	Oct-2011	354
6793500	Beaver Creek At Loretto	Dec-1945	Nov-2011	327
6794000	Beaver Creek At Genoa	Dec-1941	Oct-2011	356
6796973	Elkhorn River Near Atkinson	Dec-1983	Nov-2011	315
6796978	Holt Creek Near Emmet	Dec-1979	Sep-1989	52
6796985	Elkhorn River At Emmet	Dec-1980	Dec-1982	3
6797500	Elkhorn River At Ewing	Dec-1948	Oct-2011	349
6798000	South Fork Elkhorn River Near Ewing	Dec-1948	Nov-2011	326
6798300	Clearwater Creek Near Clearwater	Dec-1962	Sep-1991	80
6798500	Elkhorn River At Neligh	Dec-1940	Nov-2011	356
6798800	Elkhorn River At Meadow Grove	Dec-1961	Dec-1965	5
6799000	Elkhorn River At Norfolk	Dec-1946	Oct-2011	351
6799080	Willow Creek Near Foster	Dec-1976	Nov-2011	322
6799100	North Fork Elkhorn River Near Pierce	Dec-1961	Nov-2011	337
	TOTAL	Dec-1950	Nov-2011	12,901

¹Stream gage records for 6792500 and 6793000 were combined to develop a record for this location.

Table 6-4. NDNR Canal Gages Used to Adjust Baseflow Target Time Series – CENEB Model				
Gage ID	Name	Period	of Record	
Gage ID		Start	End	
1000	Ainsworth Canal from Snake River And Merritt Reservoir (15-Foot Parshall Flume)	6/1/1965	Present	
100500	Mirdan Canal from Calamus Reservoir	4/1/1987	Present	
107000	Taylor-Ord Canal from North Loup River (Rating Flume)	5/1/1947	Present	
108000	Burwell-Sumter Canal from North Loup River (Rating Flume)	5/1/1947	Present	
76500	Kent Canal from North Loup River	4/1/1995	Present	
130000	Sargent Canal from Middle Loup River (10-Foot Parshall Flume)	4/1/1957	Present	
90000	Middle Loup Canal No. 1 from Middle Loup River (Rating Flume)	1/1/1950	Present	
91000	Middle Loup Canal No. 2 from Middle Loup River (Rating Flume) 5/1/1		Present	
90200	Middle Loup Canal No.1 Pump from Middle Loup 5/1/1987 Pr River 5/1/1987 Pr		Present	
109000	Ord-North Loup Canal from North Loup River (Rating Flume) 5/1/1947 Prese		Present	

Brown AND Caldwell

Table 6-4. NDNR Canal Gages Used to Adjust Baseflow Target Time Series – CENEB Model					
CarolD	News	Period of Record			
Gage ID	Gage ID Name		End		
47000	Farwell (Sherman Feeder) Canal from Middle Loup River (25-Foot Parshall Flume)	11/1/1962	Present		
93000	Middle Loup Canal No. 4 from Middle Loup River (Rating Flume)	5/1/1947	Present		
92000	Middle Loup Canal No. 3 from Middle Loup River (Rating Flume)	5/1/1947	Present		

An automated filter was chosen to separate runoff and baseflow components of daily streamflow because of the number of gages to be analyzed and the long periods of record. A one-parameter digital filter was used, in a process consistent with the Web-Based Hydrograph Analysis Tool hosted by Purdue University (<u>https://engineering.purdue.edu/~what/</u>) (Lyne and Hollick, 1979; Nathan and McMahon, 1990; Arnold and Allen, 1999).

The equation for the filtering algorithm is:

$$q_{k} = a * q_{k-1} + \frac{(1+a)}{2} * (y_{k} - y_{k-1})$$

where:

 q_{k} is the direct runoff at time step k; q_{k-1} is the direct runoff at time step k - 1; y_{k} is the total streamflow at time step k; y_{k-1} is the total streamflow at time step k - 1; a is the filter parameter

This equation was incorporated into an automated process written using Python (version 3.2) to create a dataset with daily values of runoff and baseflow.

The daily baseflow values were aggregated to long-term, yearly, and monthly values to create a time series appropriate for the steady-state, annual, and monthly stress periods that are simulated with the model. Steady-state baseflow targets were calculated as the long-term median of the daily separated baseflow values for representative periods. These representative periods were chosen manually based on known changes to gages or system hydrology (e.g., reservoir construction) and visual inspection of long-term hydrographs. Annual and monthly baseflow values were calculated as the median of daily separated baseflow values for that time period. A description and factors considered relative to the estimated baseflow record at each gage are provided in Table 6-5.

Table 6-5. USGS Stream Gage Descriptions			
Gage ID	Name	Notes	
6453500	Ponca Creek At Anoka	Upstream gage on tributary to Missouri River; zeros in target indicate dry conditions, not missing data	
6453550	Ponca Creek At Lynch	Middle gage on tributary to Missouri River; very short record	
6453600	Ponca Creek At Verdel	Downstream gage on tributary to Missouri River, near confluence	

Brown AND Caldwell

		SGS Stream Gage Descriptions
Gage ID	Name	Notes
6458500	Bear Creek Near Eli	Gage on tributary to Niobrara River; short record but continuous
6459000	Niobrara River Near Cody	Gage on Snake River between upstream confluence with Bear Creek and downstream confluence with Medicine Creek; short record but continuou
6459175	Snake River At Doughboy	Most upstream gage on the Snake River, above and unaffected by Merrit Reservoir
6459200	Snake River Above Merritt Reservoir	Gage at inlet to Merritt Reservoir, which started operations in 1964
6459500	Snake River Near Burge	Gage below Merritt Reservoir with split record (null data for 1964-1985 pre-1964 data is unaffected by Reservoir operations; post-1964 record reflects releases and diversions and is not a valid indicator of natural stream or baseflow
6460900	Minnechaduza Creek Near Kilgore	Upstream gage on tributary to Niobrara River; between South Dakota border and confluence with Spring Creek; short record but continuous
6461000	Minnechaduza Creek At Valentine	Downstream gage on tributary near confluence with Niobrara River
6461500	Niobrara River Near Sparks	Gage on Niobrara River downstream of Crooked Creek in northeast Chern County
6462000	Niobrara River Near Norden	Gage on Niobrara River just downstream from Fairfield Creek on southwest border of Keya Paha County; short record but continuous
6462500	Plum Creek At Meadville	Gage on tributary to Niobrara River, near confluence
6463080	Long Pine Creek Near Long Pine	Upstream gage on south-side tributary to Niobrara River; at eastern edge of Ainsworth Irrigation district and affected by excess recahrge from applied irrigation water
6463500	Long Pine Creek Near Riverview	Downstream gage on south-side tributary to Niobrara River, near confluence; at eastern edge of Ainsworth Irrigation district and affected l excess recahrge from applied irrigation water (started in 1964)
6463720	Niobrara River At Mariaville	Middle gage on Niobrara River, at lower end of National Scenic River are short record
6464100	Keya Paha R Near Keyapaha	Downstream gage on tributary to Niobrara, north of border with South Dakota
6464500	Keya Paha R At Wewela	Upstream gage on tributary to Niobrara, north of border with South Dakota
6464900	Keya Paha River Near Naper	Downstream gage on tributary to Niobrara River, near confluence
6465000	Niobrara River Near Spencer	Gage on Niobrara River just above the Spencer Hydropower dam
6465310	Eagle Creek Near Redbird	Gage on tributary to Niobrara River, near confluence; short record but continuous
6465440	Redbird Creek At Redbird	Gage on tributary to Niobrara River, near confluence; short record but continuous
6465500	Niobrara River Near Verdel	Gage on Niobrara River downstream from confluence with Steel Creek an upstream of confluence with Pishel Creek
6465680	North Branch Verdigre Creek Near Verdigre	Gage on tributary to Verdigree Creek, just prior to confluence with Schindler Creek; short record but continuous
6465700	Verdigre Creek Near Verdigre	Gage on tributary to Niobrara Creek, near confluence; short record but continuous
6466400	Bazile Creek At Center	Upstream gage on Bazile Creek; null data for 10/1/2004 through 9/30/2005; Nov-Dec 2011 gage data was estimated and provisional at time of baseflow target processing
6466500	Bazile Creek Near Niobrara	Downstream gage on Bazile Creek; Null data from 10/1/1995 through 9/30/2002 when gage was not operated by USGS; Nov-Dec 2011 gage data was estimated and provisional at time of baseflow target processin - excluded from dataset
6775000	Middle Loup River At Seneca	Most upstream gage on Middle Loup River; short, early record

6-11

Table 6-5. USGS Stream Gage Descriptions			
Gage ID	Name	Notes	
6775500	Middle Loup River At Dunning	Last gage on Middle Loup River prior to confluence of Dismal River; long- term, continuous record	
6775900	Dismal River Near Thedford	Most upstream long-term gage on Dismal River	
6776000	Dismal River Near Gem Nebr	Middle gage on Dismal River; short record	
6776500	Dismal River At Dunning	Final gage on Dismal River before joining Middle Loup River; continuous record	
6777000	Middle Loup River Near Milburn	First gage downstream of confluence of Dismal River and Middle Loup River; short record but unaffected by canal diversions	
6777500	Middle Loup River At Walworth	Affected by Sargent Canal Diversion starting in 1957; only 3 months of gage data were recorded for 1940 and so was excluded from the targets	
6778000	Middle Loup River At Sargent	Calibration dataset limited to 1957-1969 time period as this is the extent of gaged diversions for the Sargent Canal that affect the flow at the Sargent gage on the Middle Loup River; only 1 month of gage record exist for 1970, so that year was not included in the calculation of an annual target	
6779000	Middle Loup River At Arcadia	First main gage downstream of Middle Loup diversions; affected by diversions at Middle Loup Canals 1-4 and Farwell (Sherman Feeder) Canal	
6780000	Middle Loup River At Rockville	Most downstream gage on Middle Loup River, affected by all Middle Loup diversions (same as Arcadia gage); missing/null data for 10/1/1964 through 9/30/1967 - annual targets for years 1964-1967 should be removed from calibration set	
6782000	South Loup River Near Cumro	Most upstream gage on South Loup River; short, early record	
6782500	South Loup River At Ravenna	Middle gage on South Loup River, final gage upstream of confluence with Mud Creek; missing/null data for $10/1/1958$ through $9/30/1967$ - annual targets for years 1964-1967 removed from calibration set	
6783000	Mud Creek Near Broken Bow	Most upstream gage on Mud Creek, tributary to the South Loup River; short, early record	
6783500	Mud Creek Near Sweetwater	Most downstream gage on Mud Creek, above confluence with South Loup River; long-term record with gage maintenance split between USGS (1946-1994) and NDNR (1994-present); zeros in baseflow data indicate dry river not null value; direct diversions of surface water may cause local and/or short term perturbations to natural flow - these are not accounted for in the baseflow targets	
6784000	South Loup River At Saint Michael	Most downstream gage on the South Loup River, above confluence with Middle Loup; continuous record	
6784300	Oak Creek Near Loup City	Downstream of Sherman Reservoir (operation started 1962-63); small tributary expected to have little/no baseflow until effects of reservoir recharge in mid-1960s; model should simulate as dry	
6784500	Oak Creek Near Dannebrog	Most downstream gage on Oak Creek, a tributary to Middle Loup River; bisects Loup Basin Reclamation District (Farwell Main, Central, and South Canals); record too early and short to show effects of irrigation districts recharge	
6784800	Turkey Creek Near Dannebrog	Most downstream gage on Turkey Creek, a tributary to Middle Loup River; bisects Loup Basin Reclamation District (Farwell Main, Central, and South Canals); long-term gage maintenance split between USGS (1966-1994) and NDNR (1994-present) with no record for 10/1/1970-9/30/1978; shows effects of excess recharge from irrigation districts that started operations in the mid-1960s	
6785000	Middle Loup River At Saint Paul	Most downstream gage on the Middle Loup River, above confluence with the North Loup; long-term, continuous record; affected by all irrigation district canal diversions along the Middle Loup (as at Arcadia)	
6785500	North Loup River At Brewster	Most upstream gage on North Loup system; split record with early years and more recent 2010-present; only North Loup gage unaffected by canal	

6-12

	Table 6-5. USGS Stream Gage Descriptions			
Gage ID	Name	Notes		
		diversions		
6786000	North Loup River At Taylor	Long-term, continuous record; affected by the Taylor-Ord diversion starting in 1947 and continuing through present		
6787000	Calamus River Near Harrop	Most upstream gage on the Calamus River, above Calamus Reservoir; gage record split between USGS (1978-1997) and NDNR (1998-2004); NDNR data not used as it was under review at the time of target development; unaffected by canal diversions		
6787500	Calamus River Near Burwell	Downstream gage on Calamus River, downstream of Reservoir and the Mirdan Diversion; gage record split between USGS (1940-1995) and NDNR (1995-2004); NDNR data not used due to internal review at the time of target development; affected by Mirdan Canal diversion and the Calamus Reservoir, both starting operations in 1987		
6788500	North Loup River At Ord	First gage downstream of confluence of Calamus River with North Loup; gage record split between USGS (1952-1994) and NDNR (1994-present); affected by Taylor-Ord, Kent, and Mirdan canal diversions		
6788988	Mira Creek Near North Loup	Only gage on tributary to North Loup River; no irrigation district canals diverted off this channel but affected by excess recharge from applied irrigation water on Twin Loups Reclamation District and North Loup PP&I District that surround it; record split between USGS (1979-1994) and NDNR (1994-2004); NDNR field office staff have observed increase in flow at this gage starting in the 1980s		
6789000	North Loup River At Scotia	Downstream of Mira Creek confluence; affected by Ord-North Loup Diversion and all others upstream (as at Ord); record for 1970 is inomplete and thus excluded from annual target		
6789500	Davis Creek Near Cotesfield	Small tributary to North Loup River with short, early record; expected effects from irrigation district activity should be minimal		
6790500	North Loup River Near Saint Paul	Most downstream gage on North Loup River; long-term, continuous record; affected by all irrigation district canal diversion on the North Loup system		
6791000	Spring Creek At Cushing	Tributary to the Loup River downstream of conflucence of North Loup and Middle Loup; direct diversions of surface water may cause local and/or short term perturbations to natural flow		
6791500	Cedar River Near Spalding	Most upstream gage on Cedar River; a signifcant tributary to Loup River – long-term, continuous record		
6791750	Cedar River At Primrose	Middle gage on Cedar River – short, early record		
6791800	Cedar River At Belgrade	Middle gage on Cedar River – short, early record		
6792000	Cedar River Near Fullerton	Most downstream gage on the Cedar River; a signifcant tributary to Loup River – long-term, continuous record		
6792500	Loup River Power Canal Near Genoa	These gages were used to build the natural flow hydrograph on the Loup River near Genoa; the record used in the target is the sum of the power canal diversions and the remaining channel flow		
6793000	Loup River Near Genoa Beaver Creek At Loretto	Beaver Creek is the most downstream major tributary to the Loup River above Columbus; Upstream gage with no gage record for 1954-1981		
6794000	Beaver Creek At Genoa	Beaver Creek is the most downstream major tributary to the Loup River above Columbus; downstream gage with long-term, continuous record		
6796973	Elkhorn River Near Atkinson	Upstream gage on Elkhorn River		
6796978	Holt Creek Near Emmet	Gage on tributary to Elkhorn River – short record		
6796985	Elkhorn River At Emmet	Middle gage on Elkhorn River – very short record		
6797500	Elkhorn River At Ewing	Middle gage on Elkhorn River – long-term, continuous record		
6798000	South Fork Elkhorn River Near Ewing	Gage on Tributary to Elkhorn River, near confluence		
6798300	Clearwater Creek Near	Gage on Tributary to Elkhorn River, near and downsteam of confluence		
0100000				

Table 6-5. USGS Stream Gage Descriptions						
Gage ID	Name	Notes				
	Clearwater	with Snake Creek				
6798500	Elkhorn River At Neligh	Gage on Elkhorn River, near and downstream of confluence with Antelope Creek				
6798800	Elkhorn River At Meadow Grove	Gage on Elkhorn River, just upstream of confluence with Buffalo Creek; very short record				
6799000	Elkhorn River At Norfolk	Gage on Elkhorn River near downstream confluence with North Fork Elkhorn River				
6799080	Willow Creek Near Foster	Gage on tributary to North Fork Elkhorn River				
6799100	North Fork Elkhorn River Near Pierce	Gage on tributary to Elkhorn River between confluences with Willow Creek and Hadar Creek				

6.5 Calibration Results – Qualitative

Prior to the calculation of calibration statistics, a qualitative review of the simulated flow regime was performed to assess the general flow system and to provide a subjective indication of the difference between simulated and field-measured (observed) heads.

6.5.1 Steady-State Flow Regime

The goal of the steady-state simulation was to approximate the general flow regime in order to provide reasonable initial conditions for transient runs. The simulated steady-state water level contours shown on Figure 6-5 capture the west-to-east groundwater flow pattern and the influence of the river systems on the pre-1940 groundwater flow regime. Simulated steady-state water levels range from a high of 3,982 ft amsl to a low of 1,201 ft amsl. An observed water level contour map for this pre-development time period is not available; however, a comparison of the simulated steady-state water level contours with observed 1979 and 1995 water level contours shown on Figure 4-2 indicates that the flow regime is fairly stable through time and that the model reasonably simulates observed groundwater flow conditions.

6.5.2 Transient Flow Regime

The simulated flow regime for 1995 is compared to observed 1995 water level contours developed by the Conservation and Survey Division (2003) on Figure 6-6. There is good agreement between the observed and calculated flow regime, with the exception of the region north of the Platte River, between the 2,800- and 3,200-ft water level contours. Model-simulated water levels are too low in this region, as shown by the gap between the simulated and observed water level contours. This slight bias is further discussed in the quantitative assessment of the model calibration (Section 6.6).

Observed versus simulated water level and baseflow hydrographs were reviewed to ensure that general trends through time are well reproduced by the model. The simulated trends are in close agreement with observed data (Appendices D and E), and the hydrographs indicate that the monthly stress periods (beginning in 1986) capture seasonal fluctuations.

6.5.3 Groundwater/Surface Water Interaction

The dominant process in the CENEB model is the interaction between groundwater and surface water. As indicated in Section 4, discharge from the aquifer to surface water when water levels in the aquifer are elevated is a key process to be simulated. A good calibration to observed water levels and the flow regime in the aquifer system was considered to be a key step in the calibration process, as this would be a significant factor in the model's ability to simulate groundwater/surface water interactions.

The aquifer is recharged by the surface water system in some locations; however, this component of the water budget is relatively minor. Figure 6-7 depicts gaining and losing reaches simulated with the CENEB model in December 2011.

6.6 Water Budgets

6.6.1 Steady-State Water Budget

The water budget for steady-state conditions (pre-1940) was compiled from the output of the calibrated CENEB model from Stress Period 1 and annualized in units of AFY. The total annualized water budget for pre-1940 is 4,736,821 AFY (Table 6-4). The predominant water budget component in the pre-1940 groundwater flow system is recharge to the aquifer, which is balanced by discharge to streams and ET. Groundwater pumping and boundary conditions are relatively insignificant budget components in the pre-development steady-state system.

Table 6-4. CENEB Steady-State Water Budget				
Water Budget Component	Steady-State (pre-1940) Annualized Budget (Acre-Feet Per Year)			
IN				
Constant Head	31,486			
Head Dependent Boundaries	214,428			
Recharge	4,274,627			
Stream Leakage	216,280			
TOTAL IN	4,736,821			
OUT				
Constant Head	100,297			
Wells	51,000			
Evapotranspiration	1,937,493			
Head Dependent Boundaries	27,364			
Stream Leakage	2,620,666			
TOTAL OUT	4,736,820			
IN minus OUT	1			
% Difference	0%			

Due to the uncertainty in many of the conceptual water budget estimates for the steady-state flow system, variations between individual budget components were deemed acceptable when comparing the CENEB steady-state water budgets (conceptual and simulated) and the ELM steady-state water budget (Table 6-5). However, because CENEB model parameters were in part based on the calibrated ELM model, significant variability was not anticipated.

Brown AND Caldwell

Table 6-5. Comparison of Conceptual versus Simulated Steady-State Water Budgets							
	CENEB Simulated Steady-State Water Budget (Acre-Feet/Year)	CENEB Conceptual Steady-State Water Budget (Acre-Feet/Year)	ELM II Steady-State Water Budget (Acre-Feet/Year)				
	11						
Storage			14				
Boundaries	245,914	165,000	90,434				
Recharge	4,274,627	4,401,000	4,009,476				
Stream Leakage	216,280	137,000	94,430				
TOTAL	4,736,821	4,703,000	4,194,354				
	Ol	Л					
Storage			12,606				
Boundaries	127,661	35,000	331,451				
Wells	ells 51,000						
Evapotranspiration	1,937,493	1,814,000	1,287,880				
Stream Leakage 2,620,666		2,800,000	2,562,053				
TOTAL	4,736,820	4,703,000	4,193,990				
COMPARISON OF NET BUDGET COMPONENTS							
Total IN minus OUT	1	0	364				
Net Stream Leakage OUT	2,404,386	2,663,000	2,467,623				
Net Boundaries IN (positive) OUT (negative)	118,253	130,000	-241,017				

The increased size of the CENEB model domain and the incorporation of CropSim-generated pumping, recharge from precipitation, and agricultural recharge resulted in a redistribution of water between CENEB and ELM budget components, and a 13 percent increase in the total budget (Table 6-5).

The CENEB simulated steady-state water budget compares favorably to the conceptual steady-state water budget; the total difference between these budgets is 33,821 AFY, or 1 percent. The largest differences between the conceptual versus simulated budgets are for recharge, stream leakage, and ET. Recharge estimates for the conceptual steady-state budget were developed based on preliminary simulations using CropSim (Section 4.6.3). Due to refinements in the CropSim inputs during calibration, the difference between the conceptual and the final simulated recharge is approximately 126,000 AFY. Changes in the prescribed recharge inputs were largely balanced by discharge to streams and ET.

The net stream leakage (i.e., the difference between the inflow and outflow) and net inflow from boundary conditions are also compared in Table 6-5 and reflect very close agreement between the conceptual and simulated CENEB water budgets.

6.6.2 Transient Water Budget

The 2011 transient water budget was compiled from CENEB model output and is approximately 14,000,000 AFY (Table 6-6). This water budget represents the 2011 calendar year period and was calculated as the difference between the cumulative water budget at the end of 2011 versus the end of 2010.

The seasonal variability in recharge and agricultural pumping is evident when comparing the irrigation season versus non-irrigation season water budgets (Table 6-7). Recharge is highest during the wet season in June, drops to one-third the June levels by August, and is insignificant in December.

Groundwater pumping must offset months with lower rainfall thus is highest in August, and drops to zero in the off season (December).

Table 6-6. CENEB 2011 Transient Water Budget					
	2011 Transient Budget				
Water Budget Component	(Acre-Feet Per Year)				
IN					
Storage	3,659,320				
Constant Head	32,657				
Head Dependent Boundaries	204,711				
Recharge	10,078,053				
Stream Leakage	173,586				
TOTAL	14,148,327				
OUT	Г				
Storage	6,391,185				
Constant Head	125,789				
Wells	1,315,427				
Evapotranspiration	2,121,212				
Head Dependent Boundaries	46,265				
Stream Leakage	4,143,710				
TOTAL	14,143,588				
IN minus OUT	4,739				
% Difference	0.03%				

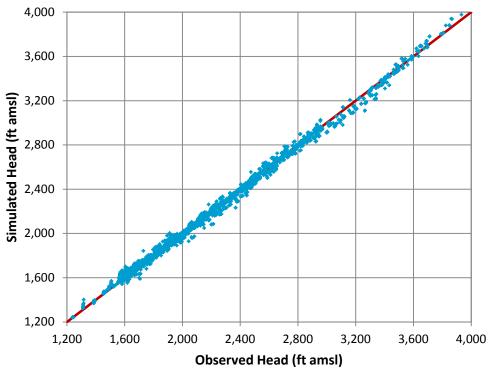
Table 6-7. Comparison of June, August, and December 2011 Water Budgets							
Water Budget Component	June 2011 (Acre-Feet / Month)	August 2011 (Acre-Feet/Month)	December 2011 (Acre-Feet / Month)				
IN							
Storage	108,322	765,102	347,737				
Constant Head	2,538	3,036	2,778				
Head Dependent Boundaries	17,040	17,002	16,983				
Recharge	2,448,823	727,989	82,357				
Stream Leakage	14,836	17,429	13,488				
TOTAL	2,591,559	1,530,558	463,343				
OUT							
Storage	1,765,433	155,828	83,151				
Constant Head	11,157	10,189	10,218				
Wells	20,752	695,766					
Evapotranspiration	420,169	329,324	22,501				
Head Dependent Boundaries	3,965	3,894	3,800				
Stream Leakage	370,098	334,981	343,751				
TOTAL	2,591,574	1,529,982	463,421				
IN minus OUT	-15	576	-78				
% Difference	0.00%	0.04%	-0.02%				

Brown AND Caldwell 6-17

6.7 Calibration Results – Quantitative

The quantitative analysis of the model calibration utilized statistical measures of model residuals, as described in Section 6.1.2 and comparisons of observed versus simulated water levels and stream baseflows. Long-term hydrographs of observed versus simulated water levels for 43 wells representing all major zones within the model domain are provided as Appendix C. Stream baseflow hydrographs comparing observed versus simulated baseflows are provided as Appendix D.

6.7.1 Quantitative Results – Hydraulic Heads


Calibration statistics for all head residuals for both steady-state and transient stress periods are presented in Table 6-8. The statistics are well within the goals established for the CENEB model calibration: MAE as a percent of total range in observations is 0.74 percent (goal: less than 2 percent), and the RMSE as a percent of total range in observations is 1.03 percent (goal: less than 2 percent). The MAE for the model calibration is 20 ft, less than half the calibration goal of 54 ft. The ME of 3 ft indicates that the observed heads are slightly higher than the calculated heads (averaged over the model domain); the very low magnitude of the mean indicates that there is not a significant bias overall.

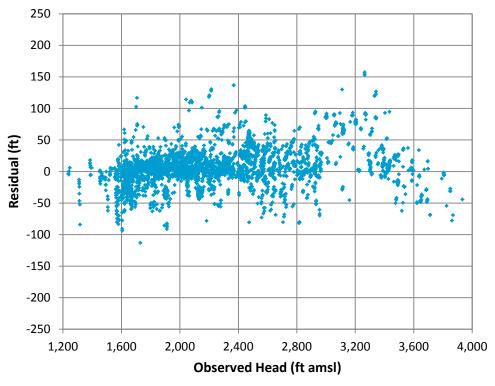
A plot of the observed versus model-simulated head targets is presented below to graphically illustrate the calibration; points that plot on or near the perfect fit line (in red on Graph 6a) indicate a close match between observed and simulated water levels. Overall, Graph 6a illustrates that the residuals are clustered along the perfect fit line, with model values slightly low in the range from 3,000 to 3,300 ft amsl.

Table 6-8. Head Residual Calibration Statistics ¹ – CENEB Model					
Statistical Measure	Result				
Mean Error (ft)	3				
Mean Absolute Error (ft)	20				
Residual Std. Deviation (ft)	28				
RMS Error (ft)	28				
Minimum Residual (ft)	-113				
Maximum Residual (ft)	157				
Number of Observations	24,140				
Range in Observations (ft)	2,696				
MAE as a % of Total Range in Observations	0.74%				
RMSE as a % of Total Range in Observations	1.03%				

¹Residual = OBSERVED minus CALCULATED head.

Graph 6a. Simulated versus Observed Head Targets

6.7.1.1 Potential Bias in Model Results


The relationship between the observed head and the residual is a useful tool to assess potential bias in the calibration results by zone (Graph 6b). Head values increase from east to west across the model domain; thus, Graph 6b shows that there are more targets in the east (lower heads) than in the west, consistent with the highest concentration of wells. Approximately 91 percent of all residuals are in the range from -50 to 50 ft.

There is a slight local-scale bias (model too low, positive residual) in simulated groundwater elevations from approximately 3,000 to 3,300 ft amsl, corresponding to the region of slightly low simulated water levels in the Sand Hills, north of the Platte River in the west-central portion of the model domain. Trends evident on Graph 6b also reflect that there are many more positive than negative residuals in the range from 2,400 to 2,800 ft amsl. However, these graphs reflect multiple observations in long-term water level hydrograph data, which can impact interpretations based solely on plots of all data through time. Simulated water level contours and residuals for 2011 are presented on Figure 6-8 to examine the spatial distribution of resdiuals across the model domain. Residuals that indicate a very close match between observed and simulated heads (±10 ft) are shown in gray in order to highlight any patterns formed by large residuals, both positive and negative.

The patterns shown on Figure 6-8 indicate two localized areas of bias in water levels: the model tends to underestimate heads in a portion of the Sand Hills region (as noted above), and overestimate heads along the lower reaches of the Elkhorn River and within the North Elkhorn River watershed, along the eastern boundary of the model.

The central portion of the Loup River watershed appears to have a bias where simulated water levels are too low, however, there are a large number of residuals in the range of ± 10 ft interspersed with positive residuals (Figure 6-8), and this is not considered to be an area of concern.

Graph 6b. Observed Head Targets versus Residuals

Generally, the model tends to underestimate stream baseflow in the Sand Hills region where there is a positive bias in water levels (model values too low). During calibration, hydraulic parameters were adjusted in an attempt to reduce bias in heads while increasing simulated baseflow to achieve a better match with observed conditions; parameters that were adjusted include: ET rates and distribution, stream bottom elevations, and stream conductance. Higher values of aquifer hydraulic conductivity were effective in increasing simulated baseflow. The consequence of higher aquifer hydraulic conductivity, however, lowered groundwater elevations. Ultimately, the bias in heads was minimized as much as possible while optimizing the calibration with respect to baseflow.

Similarly, baseflows tended to be higher than observed values along lower portions of the Elkhorn River and in the North Elkhorn River watershed, where there is a negative bias in simulated water levels (model values too high). In these areas, increasing aquifer hydraulic conductivity to reduce groundwater elevations resulted in an overestimation of baseflow. As a result, aquifer hydraulic conductivity was maintained at lower values to ensure an adequate baseflow calibration; this approach resulted in heads that are generally overestimated in the northeastern portion of the domain. The overestimation of heads was minimized as much as possible while maintaining agreement between observed and simulated baseflow.

The areas of local bias were evaluated and improved to the extent feasible, while maintaining a balance between the calibration to heads and baseflows. With respect to the model purpose, these two areas of bias are not significant in terms of potential effects on simulating groundwater-surface water interactions.

6.7.1.2 Flooded Cells

The groundwater model is not constrained to simulate water levels below ground surface. Simulated heads that are above ground surface simply represent a slight excess in groundwater head related to the



simulated flux in a model cell. These cells are characterized as "flooded," but do not actually represent surface water in the model simulation. As part of the model performance evaluation, flooded cells were analyzed to evaluate areas where the model simulates heads above ground surface. (In the CENEB model, the average DEM value was used to define ground surface elevation.) Five different stress periods were reviewed to assess the occurrence of flooded cells (stress periods 41, 62, 158, 223, and 358). These stress periods were chosen in order to capture variability in stresses over the entire simulation, ranging from relatively dry to relatively wet conditions.

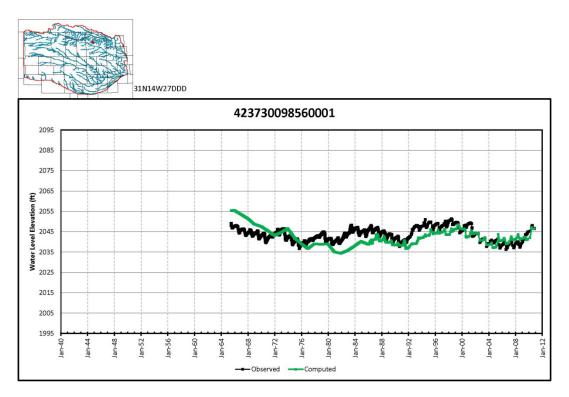
Approximately 1,202 of the total 49,275 model cells simulate groundwater levels above the ground surface for the selected stress periods, based on an average DEM value as the ground surface elevation. Given that each model cell represents average conditions over a square-mile area, the average topographic elevation may not be the best indicator that simulated groundwater heads would actually be above ground surface over large portions of the model cell. When the maximum DEM values are used to define land surface for the model cells, the number of flooded cells decreases by approximately 82 percent, and the flooded cells are limited to a few small regions. Regions of the model that remain flooded even after implementing the maximum DEM elevation primarily include small areas within South Dakota along Ponca Creek and the downstream portions of the Elkhorn River.

6.7.1.3 Statistics for Specific Stress Periods

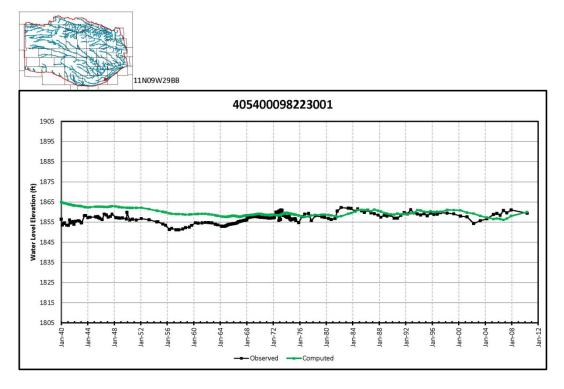
Statistics summarizing the results of calibration for steady state, for specific years in the transient simulation, and for the long-term hydrographs are presented in Table 6-9. In all cases, calibration statistics exceed the calibration goals. It should be noted that model stress periods changed from annual to monthly beginning in 1986. No discernible difference in the quality of the calibration is evident in the 2000 and 2011 calibration statistics (versus previous years), indicating a successful transition to monthly stresses.

Table 6-9. Steady-State and Transient Head Residual Calibration Statistics ¹ – CENEB Model										
Year	Number of Targets	Range in Observations (feet)	Mean Error (feet)	Mean Absolute Error (MAE) (feet)	MAE as % of Total Head Change	Root Mean Squared Error (RMSE) (feet)	RMSE as % of Total Head Change	Standard Deviation (feet)	Minimum Residual	Maximum Residual
Pre-1940	121	2,382	6	18	0.7%	29	1.2%	28	-113	114
1946	195	2,691	1	11	0.4%	18	0.7%	18	-78	117
1964	440	2,460	10	18	0.7%	27	1.1%	25	-78	102
1976	1,042	2,613	2	22	0.8%	29	1.1%	29	-86	130
1985	1,091	2,567	4	22	0.8%	29	1.1%	29	-82	130
2000	978	2,537	7	22	0.9%	31	1.2%	30	-84	157
2011	868	2,537	3	22	0.9%	32	1.2%	31	-94	154
Hydrographs	21,508	1,996	3	20	1.0%	27	1.4%	27	-58	92
TOTAL ²	24,140	2,696	3	20	0.7%	28	1.0%	28	-113	157

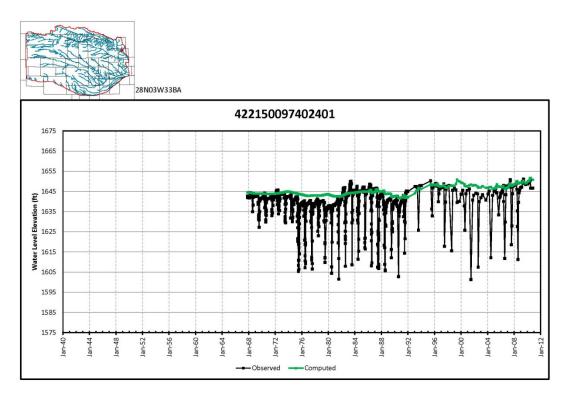
¹Residual = OBSERVED minus CALCULATED head.


²Total number of targets in the long-term hydrographs is 21,508; of these, 2,103 are included in the steady-state or specific year counts and statistics.

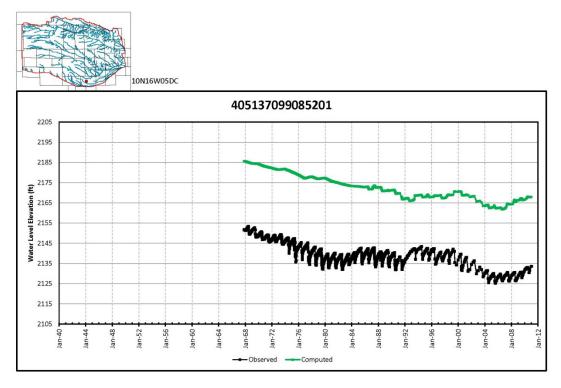
6-22


6.7.1.4 Long-Term Hydrographs

A total of 43 water level hydrographs are provided as Appendix C, comparing observed versus simulated water levels through time. These wells were selected as targets based on (1) their location within the model area, and (2) the availability of relatively long-term, continuous water level measurements. The agreement between simulated and observed hydrographs is good to excellent for all the sub-regions simulated and general trends were well reproduced, as shown on Graphs 6c through 6f. The model is not able to simulate all of the small-scale perturbations in observed water levels, due to the model cell size and length of the stress periods. However, beginning in 1986 with the start of monthly stress periods, it is apparent that the resolution in the simulated hydrographs changes from a generalized trend to a seasonal trend that more closely captures short-term fluctuations.



Graph 6c. Observed vs. Simulated Hydrograph for Well 4237300985600001



Graph 6d. Observed vs. Simulated Hydrograph for Well 405400098223001

Graph 6e. Observed vs. Simulated Hydrograph for Well 422150097402401

Graph 6f. Observed vs. Simulated Hydrograph for Well 405137099085201

Targets shown on Graphs 6c through 6e indicate a very close match between observed and simulated water levels. On Graph 6f, there is an approximately 30-ft difference between the simulated and observed water levels, which may be attributed to uncertainties in observed elevations, to local effects that are not captured in the regional-scale model, or to a needed adjustment in local model parameters. However, the simulated hydrograph shown on Graph 6f matches the observed trends very closely, including the long-term decline from 1968 to 1988 and the more recent water level rise from 2008 through 2011. Given that there are uncertainties in the targets and limitations to the model's ability to simulate conditions on a small, local scale, effectively simulating the long-term trends was considered to be an important goal of the calibration.

6.7.2 Quantitative Results – Baseflow

Calibration statistics for all baseflow residuals for both steady-state and transient stress periods are presented in Table 6-10. The statistics are well within the goals established for the CENEB model calibration: MAE as a percent of total range in observations is 2.36 percent (goal: less than 5 percent), and the RMSE as a percent of total range in observations is 4.72 percent (goal: less than 5 percent). The MAE for the model calibration is 81 cfs, less than half the calibration goal of 172 cfs. The statistics indicate a good overall calibration to the baseflow targets.

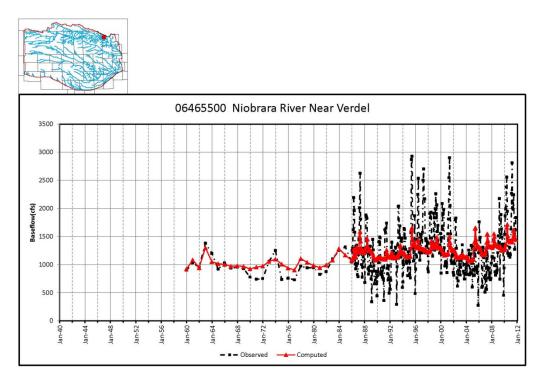
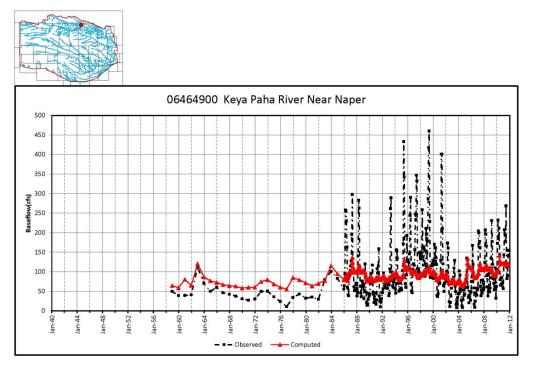
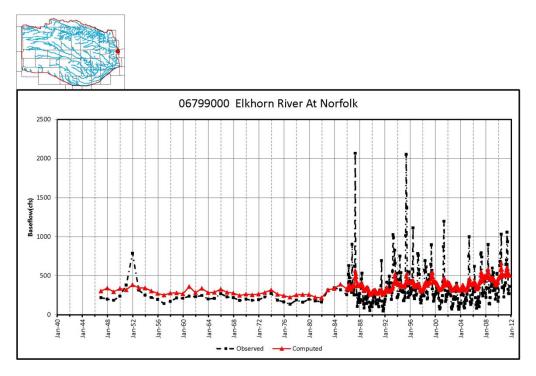

The observed versus simulated baseflow hydrographs provided as Appendix D demonstrate that the CENEB model is capable of simulating general trends as well as short term (monthly) oscillations, effectively capturing the interaction between stream baseflow and groundwater. Graphs 6g through 6l are hydrographs comparing observed versus simulated baseflow for the key stream gages on the largest rivers in the model domain.

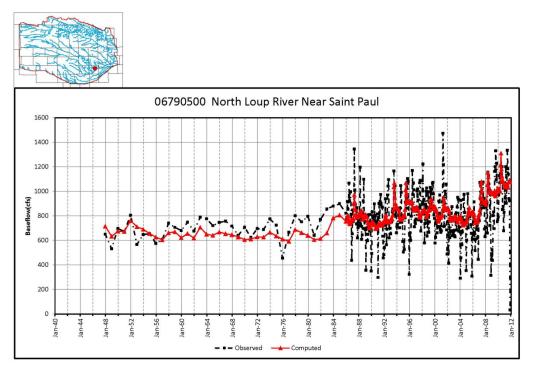
Table 6-10. Baseflow Residual Calibration Statistics1 - CENEB Model				
Statistical Measure	Result			
Mean Error (cfs)	-5			
Mean Absolute Error (cfs)	81			
Residual Std. Deviation (cfs)	162			
RMS Error (cfs)	162			
Minimum Residual (cfs)	-1,809			
Maximum Residual (cfs)	1,558			
Number of Observations	12,901			
Range in Observations (cfs)	3,438			
MAE as a % of Total Range in Observations	2.36%			
RMSE as a % of Total Range in Observations	4.72%			


¹Residual = OBSERVED minus CALCULATED baseflow.

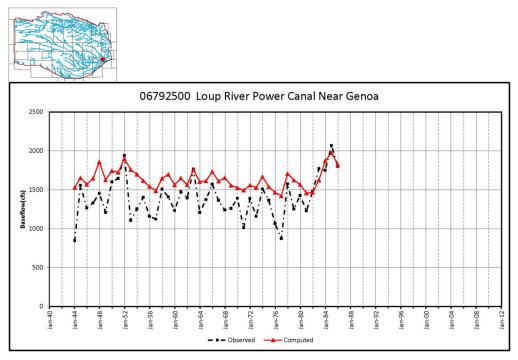
Trends are captured very well for both the early period (through 1985) with annualized stress periods, and during the later period (post-1985) with monthly stress periods. The model is not able to reproduce the abrupt highs and lows in the observed baseflow hydrographs during the period from 1986 through 2011 which are likely the result of variations occurring at time scales less than a month, but the simulated peaks closely match the trends in observed data. For some of the more variable baseflow hydrographs (Keya Paha near Naper, Niobrara near Verdel), the simulated baseflow follows a general trendline that represents the average or median of the observed baseflow.



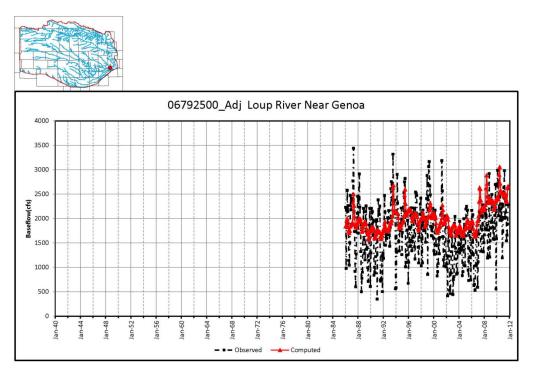
Graph 6g. Observed vs. Simulated Baseflow – Niobrara River near Verdel.



Graph 6h. Observed vs. Simulated Baseflow – Keya Paha River near Naper.



Graph 6i. Observed vs. Simulated Baseflow – Elkhorn River at Norfolk.



Graph 6j. Observed vs. Simulated Baseflow - North Loup River near St. Paul.

Graph 6k. Observed vs. Simulated Baseflow -- Loup River near Genoa. Data are from Loup River Near Genoa gage (06793000) adjusted by the Loup Power Canal diversions (gage 06792500).

Brown AND Caldwell

Statistics summarized by the main river systems (Niobrara, Loup, and Elkhorn) are provided in Table 6-11; Ponca Creek (a direct tributary of the Missouri River) is not reflected in this table. Significant differences between baseflow residuals statistics for all targets versus the statistics by major river basin are not evident, except for the MAE of 63 cfs in the Elkhorn River Basin (versus an MAE of 81 cfs for all targets from Table 6-10).

Table 6-11. Baseflow Residual Calibration Statistics for River Basins¹ – CENEB Model Root Mean Mean Mean Squared RMSE MAE as % Number Range in Error Absolute Error as % of of Total (RMSE) of **Observations** (ME) Error (MAE) Total **River Basin²** Targets (cfs) (cfs) Range (cfs) Range Niobrara River Basin 3,783 2,925 -4.2 88 2.99% 173 5.92% Elkhorn River Basin 2,496 2,066 -13 63 3.04% 119 5.76% 3.438 -0.5 92 2.67% 180 5.25% Loup River Basin 5.813

¹Residual = OBSERVED minus CALCULATED baseflow.

²Ponca Creek (tributary to the Missouri River) not reflected in these statistics.

The MAE for all baseflow residuals for the entire period of record at each target location is posted on Figure 6-9. The largest MAE values are associated with relatively high-flow gages on the mainstems of the river systems that exhibit a large variation in highs and lows over a short period (example shown on Graphs 6k and 6l, above).

6.7.3 Summary

CENEB model construction and calibration were assessed by the modeling team to evaluate the model conceptualization and mathematical representation of the boundary conditions in the context of the

objectives of the project. The appropriateness of the boundaries and the system conceptualization is frequently more important than achieving the smallest differences between simulated and observed water levels and baseflow (Reilly and Harbaugh, 2004). During this review, the boundary conditions (type and location) were verified as appropriate and reasonable for the objectives of the project and had no undue influence on the flow regime in the areas of interest within the major river basins. The generalized simulation of the South Dakota portion of the model was deemed acceptable as this area, relatively distal to the areas of interest, improved the model's ability to simulate that portion of the Niobrara River Basin in Nebraska.

A balance between qualitative and quantitative measures of calibration was employed to produce a reasonable representation of the conceptual model and sources of water, while minimizing the discrepancies between observed and measured water levels and baseflow. As such, differences between the simulated and observed water levels and baseflow were deemed reasonable for the objectives of the project, when satisfying the overarching goal of reproducing long-term trends.

A good calibration to qualitative and quantitative targets was achieved with the CENEB model based on:

- Acceptable approximations of the steady-state and transient flow regimes, as demonstrated by the match between observed and simulated water level contours
- Model's ability to reproduce general trends in the simulated, long-term water level and baseflow hydrographs
- Monthly stress periods that capture seasonal variations
- Residual head and baseflow statistics that meet/exceed the calibrations goals

The simulated head and flow distributions capture the magnitude and direction of the water level contours, and the agreement between simulated and observed hydrographs provides a measure of the ability of the model to reproduce observed long-term trends under differing hydrologic conditions. Because the model is shown to be a reasonable representation of observed surface water and groundwater flow conditions, there is a high level of confidence in the model for its intended use in assessing the BWS.

Section 7 Sensitivity Analysis

A sensitivity analysis was performed to assess the response of the CENEB model calibration to changes in selected model input parameters, and to identify those parameters that most directly influence model results. A parameter in a groundwater model is considered to be sensitive when small changes in that parameter produce significant changes in model output (i.e., calibration statistics). Assessing model sensitivity provides a general measure of the robustness of model construction, uniqueness of calibration, and an understanding of how parameter uncertainty impacts model results.

7.1 Design

The sensitivity analysis was designed to quantify variability in model results due to uncertainty in estimated hydraulic parameter values (e.g., hydraulic conductivity) and uncertainty in prescribed model inputs (e.g., recharge). The sensitivity study was also used to evaluate the impact of hydraulic parameters and prescribed inputs on stream baseflows over time.

To assess the sensitivity of the CENEB model to key model parameters, hydraulic conductivity, streambed conductance, and specific yield were varied within a reasonable range for the type of geologic material to assess the resulting impacts on model calibration. Hydraulic conductivity and streambed conductance were selected based on experience and observations during the calibration phase; specific yield was included because of the potential for the model to be sensitive to storage. These three input parameters were increased and decreased by up to 25 percent, and the resulting impacts on the model calibration and baseflow mass balance were tabulated. The results indicated that variations of up to 25 percent adequately captured the model sensitivities, thus the range was not expanded further.

To address uncertainty in the prescribed model inputs, recharge and pumping were included in the sensitivity analysis. Recharge and pumping were increased and decreased by up to 25 percent in all cells and for all stress periods to assess the resulting impacts on the model calibration and baseflow mass balance. Table 7-1 summarizes the model inputs that were varied, the original range parameter values, and the test range.

Table 7-1. Sensitivity Analysis Design – CENEB Model									
Variable	Variable Initial Values Percent Change Test V								
Hydraulic Parameters									
Hydraulic Conductivity	2.5 to 75.6 ft/day	+25 to -25	1.9 to 94.6 ft/day						
Stream Conductance	0.2 to 1,657,005 ft²/day	+25 to -25	0.1 to 2,071,226 ft²/day						
Specific Yield	0.002 to 0.26	+25 to -25	0.0014 to 0.325						
Prescribed Inputs	Prescribed Inputs								
Recharge	5.90 million AFY	+25 to -25	4.43 to 7.38 million AFY						
Pumping	1.03 million AFY	+25 to -25	0.77 to 1.29 million AFY						

7.2 Results

During calibration, it was observed that relatively significant changes in the model-simulated head and baseflows correlated with a 0.8- to 1-ft change in the MAE for head residuals, or a 5- to 10-cfs change in the MAE for baseflow residuals. These threshold values were used as a guideline to categorize the sensitivity level of the model to changes in parameters and inputs.

Stream baseflow was one of the key metrics used to evaluate the sensitivity of the CENEB model. Average annual baseflow was calculated for the calibrated version of the CENEB model and for all sensitivity simulations, using the cumulative net stream gain (Stream Out minus Stream In) from the model-calculated water budget for the entire 72-year simulation divided by 72 years (total simulation time) to produce an annual average baseflow. The change in the average annual baseflow, versus the calibrated model, provided a metric to evaluate sensitivity that is directly linked to the model purpose. The size of the CENEB model and the relatively large average annual baseflow volumes (2.7 million AFY) were taken into consideration when developing a guideline to assess sensitivity with this metric; a 2 percent change in the average annual baseflow or 54,000 AFY was considered to be the threshold for sensitivity.

7.2.1 Hydraulic Conductivity


Increases/decreases of up to 25 percent in hydraulic conductivity values are within the range of plausible variability for this hydraulic parameter, which is an order-of-magnitude estimate. Additionally, calibrated values from the ELM were retained as starting estimates in the CENEB model thus the plausible range of estimates for this parameter was narrow and relatively well constrained at the start of the CENEB model calibration. The model was sensitive to a decrease in hydraulic conductivity by 15 percent and very sensitive to a decrease of 25 percent (Table 7-2 and Graph 7a); these changes increased the MAE by 0.8 and 2.1 ft, respectively.

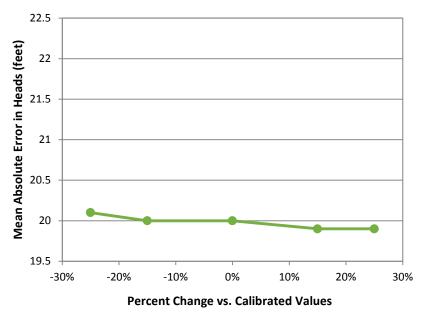
The model was insensitive to increases in hydraulic conductivity when evaluating the MAE for head and baseflow residuals, however, the mean of the head residuals (7 to 9 ft) and average annual baseflow increased significantly (up to 122,835 AFY) as compared to the calibrated values. This translates to lower head in the aquifer, and more water discharged to streams, resulting in a bias that adversely impacts calibration. The sensitivity analysis confirmed that the calibrated hydraulic conductivity values resulted in a good balance between the water levels in the aquifer and stream baseflow.

Table 7-2. Sensitivity Analysis Results – Hydraulic Conductivity (Kx, Ky)										
Percent	H	lead Residu	als1		Baseflow Residuals ¹					
Change Versus Calibrated Value	Mean (ft)	MAE (ft)	Scaled MAE	Mean (cfs)	MAE (cfs)	Scaled MAE	Average Annual Baseflow Mass Balance (AFY)²	Change in Average Annual Baseflow Mass Balance (AFY)		
25%	9	19.9	0.737%	-17.2	82.5	2.40%	2,801,699	122,835		
15%	7	19.8	0.734%	-12.5	81.8	2.38%	2,754,626	75,761		
0	3	20.0	0.741%	-5.0	81.0	2.36%	2,678,864			
-15%	-1	20.8	0.773%	3.6	80.9	2.35%	2,592,879	-85,985		
-25%	-5	22.1	0.821%	10.4	81.4	2.37%	2,528,176	-150,688		

¹Residual = OBSERVED minus CALCULATED value.

Graph 7a. Sensitivity Analysis - Hydraulic Conductivity

7.2.2 Stream Conductance


As noted in Section 8.1, streambed conductance in the CENEB model is generally very high (up to 1,657,004.5 ft²/day), consistent with the conceptual model that indicates a strong hydraulic connection between the aquifer and the streams. Increasing streambed conductance values during calibration did not significantly change baseflow, as that process is more dependent upon aquifer hydraulic conductivity; conversely, large reductions in stream conductance would be inconsistent with the conceptual model, hence the sensitivity analysis was limited to a 25 percent increase/decrease in stream conductance.

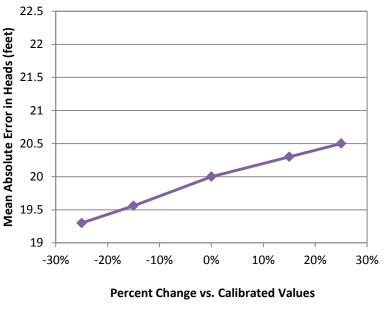
As expected, the model was insensitive to increases/decreases of up to 25 percent in stream conductance (Table 7-3 and Graph 7b). The sensitivity analysis confirmed that the calibrated hydraulic conductivity values are within the range that produces the best calibration statistics for head and baseflow residuals.

Table 7-3. Sensitivity Analysis Results – Streambed Conductance										
Percent	H	lead Residu	ials1		Baseflow Residuals ¹					
Change versus Calibrated Values	Mean Error (ft)	MAE (ft)	Scaled MAE	Mean (cfs)	MAE (cfs)	Scaled MAE	Average Annual Baseflow Mass Balance (AFY)²	Change in Average Annual Baseflow Mass Balance (AFY)		
25%	4	19.9	0.738%	-8	80.9	2.35%	2,702,738	23,874		
15%	3	19.9	0.739%	-7	80.9	2.35%	2,694,354	15,490		
0	3	20.0	0.741%	5	81.0	2.36%	2,678,864			
-15%	3	20.0	0.743%	-2	81.2	2.36%	2,659,300	-19,565		
-25%	2	20.1	0.745%	-0.4	81.3	2.37%	2,642,682	-36,182		

¹Residual = OBSERVED minus CALCULATED value.

Graph 7b. Sensitivity Analysis – Stream Conductance

7.2.3 Specific Yield


The model's sensitivity to increases/decreases of up to 25 percent in specific yield was evaluated; results are shown in Table 7-4 and on Graph 7c. The inverse relationship between specific yield and average annual baseflow can be seen in Table 7-4, reflecting that higher storage in the aquifer reduces baseflow.

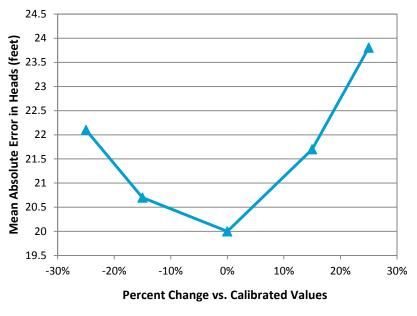
The model was insensitive to increases in specific yield of up to 25 percent and insensitive to a decrease of 15 percent; the model was sensitive to the maximum increase of 25 percent, as shown by the 7 cfs decrease in the mean of the baseflow residuals (from -5 to -12 cfs) and the increase of 229,831 AFY in average annual baseflow. Statistically, a slight decrease in specific yield throughout the model domain would improve calibration, although it was found that locally, this adjustment introduced negative impacts on the baseflow calibration. The calibrated specific yield values were retained as they resulted in the best overall calibration statistics for observed water level and baseflow residuals.

Table7-4. Sensitivity Analysis Results – Specific Yield										
Percent	H	lead Residu	ials1		Baseflow Residuals ¹					
Change versus Calibrated Values	Mean Error (ft)	MAE (ft)	Scaled MAE	Mean (cfs)	MAE (cfs)	Scaled MAE	Average Annual Baseflow Mass Balance (AFY) ²	Change in Average Annual Baseflow Mass Balance (AFY)		
25%	3	20.5	0.760	-1	81.4	2.37	2,655,047	-23,817		
15%	3	20.3	0.753	-2	81.2	2.36	2,663,844	-15,020		
0	3	20.0	0.741	-5	81.0	2.36	2,678,864			
-15%	3	19.6	0.726	-9	81.0	2.36	2,697,336	18,471		
-25%	3	19.3	0.715	-12	81.2	2.36	2,908,696	229,831		

¹Residual = OBSERVED minus CALCULATED value.

Graph 7c. Sensitivity Analysis – Specific Yield

7.2.4 Recharge


Increases and decreases of 15 percent in recharge equate to an annual average change of ±885,600 AFY or ±119 AFY of recharge per mile of stream (based on total simulated stream length of 7,415 miles). Increases and decreases of 25 percent equate to an annual average change of ±1.476 million AFY, or ±199 AFY of recharge per mile of stream.

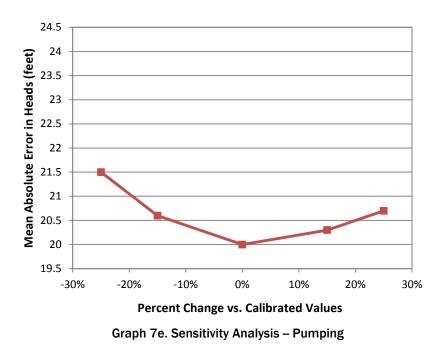
The model was very sensitive to increases/decreases in recharge of 15 to 25 percent; these changes in the prescribed recharge rates adversely affected all calibration metrics, especially baseflow (Table 7-5 and Graph 7d). The change in the baseflow mass balance was consistently in the range of 60 percent of the volumetric increases/decreases in recharge, and underscores the direct relationship between these two budget components. The sensitivity analysis confirmed that the calibrated recharge rates resulted in the best calibration statistics for observed water level and baseflow residuals.

Table 7-5. Sensitivity Analysis Results – Recharge										
Percent	H	lead Residu	ials1		Baseflow Residuals ¹					
Change versus Calibrated Values	Mean (ft)	MAE (ft)	Scaled MAE	Mean (cfs)	MAE (cfs)	Scaled MAE	Average Annual Baseflow Mass Balance (AFY)²	Change in Average Annual Baseflow Mass Balance (AFY)		
25%	-8	23.8	0.882	-102	122.8	3.57	3,603,270	924,405		
15%	-3	21.7	0.806	-62	98.6	2.87	3,225,595	546,730		
0	3	20.0	0.741	-5	81.0	2.36	2,678,864			
-15%	10	20.7	0.767	51	88.3	2.57	2,153,547	-525,317		
-25%	15	22.1	0.820	86	105.7	3.07	1,821,140	-857,724		

¹Residual = OBSERVED minus CALCULATED value.

Graph 7d. Sensitivity Analysis - Recharge

7.2.5 Pumping


Increases and decreases of 15 percent in pumping equate to an annual average change of $\pm 154,700$ AFY; increases and decreases of 25 percent in pumping equate to an annual average change of $\pm 257,800$ AFY. The change in the baseflow mass balance was consistently in the range of 24 to 25 percent of the volumetric increases/decreases in pumping (Table 7-6).

The model was sensitive to increases/decreases in pumping of 25 percent but relatively insensitive to increases/decreases of 15 percent (Table 7-6 and Graph 7e). Decreases in pumping had a larger impact on both head and baseflow residuals than increases; relatively large changes in the mean of the baseflow residuals indicates a response to decreases in pumping on the local scale that indicate a bias with simulated baseflow higher than observed baseflow.

Table 7-6. Sensitivity Analysis Results – Pumping										
Percent	H	lead Residu	ials1		Baseflow Residuals ¹					
Change versus Calibrated Values	Mean (ft)	MAE (ft)	Scaled MAE	Mean (cfs)	MAE (cfs)	Scaled MAE	Average Annual Baseflow Mass Balance (AFY)²	Change in Average Annual Baseflow Mass Balance (AFY)		
25%	7	20.7	0.767	3	79.4	2.31	2,617,349	-61,516		
15%	5	20.3	0.752	-0.3	79.9	2.33	2,641,634	-37,230		
0	3	20.0	0.741	-5	81.0	2.36	2,678,864			
-15%	1	20.6	0.763	-10	82.4	2.40	2,717,492	38,628		
-25%	0.1	21.5	0.799	-13	83.4	2.43	2,744,020	65,156		

¹Residual = OBSERVED minus CALCULATED value.

7.3 Summary

Results from the sensitivity analysis are summarized in Table 7-7. The numerical model was insensitive to stream conductance, to specific yield (except for a 25 percent increase), and to ± 15 percent changes in pumping. For all other parameters and inputs, the model was sensitive to very sensitive.

Table 7-7. Summary of Sensitivity Analysis Results									
Hydraulic Parameter or Increase/Decrease versus Calibrated Values									
Prescribed Model Input	+25 Percent	+15 Percent	-15 Percent	-25 Percent					
Hydraulic Conductivity	Very Sensitive	Sensitive	Sensitive	Very Sensitive					
Stream Conductance	Insensitive	Insensitive	Insensitive	Insensitive					
Specific Yield	Sensitive	Insensitive	Insensitive	Insensitive					
Recharge	Very Sensitive	Very Sensitive	Very Sensitive	Very Sensitive					
Pumping	Sensitive	Insensitive	Insensitive	Sensitive					

The sensitivity analysis results (Tables 7-2 through 7-6) included an evaluation of the changes in the baseflow mass balance that resulted from varying parameters and prescribed model inputs (pumping and recharge). In all cases, variations that reduced the volume of water in the aquifer (i.e., decreased pumping, higher storage values, etc.) resulted in a reduction in baseflow. Similarly, changes to the model that would increase the amount of water in the aquifer (i.e., increased recharge, higher streambed conductance, etc.) resulted in an increase in baseflow. The model response to variations in pumping and recharge was proportionate to the volumetric change in these inputs, demonstrating the model's ability to simulate changes in baseflow caused by subtle as well as large-scale changes in stresses.

The estimated hydraulic parameters and prescribed inputs used in the calibrated model were confirmed by the sensitivity analysis as producing the best overall calibration statistics with a good balance between simulated water levels and baseflows. Thorough model testing during calibration and the sensitivity analysis support the use of the CENEB model as a robust tool for assessing the BWS and baseflow depletions within the model domain.

Section 8

Limitations and Refinements

8.1 Limitations of the Model

The CENEB model was developed through a detailed process including calibration and a sensitivity analysis subject to independent review and oversight. As such, the model is a well-developed tool for use in assessing BWS and stream depletions. However, all models have a degree of uncertainty related to model simulations. These uncertainties arise due to the accuracy, nature, timing, and location of field measured conditions, and application of the model is limited based on the range of uncertainty in model inputs and assumptions. The CENEB model represents a balance of flows entering the regional model domain from recharge and underflow, and exiting as pumping, ET, and baseflow to surface water. The balance achieved through calibration represents the best available understanding of groundwater-surface water interactions in the river basins. The results of the sensitivity analysis indicate that the model results can be sensitive to various inputs such as recharge and hydraulic conductivity; however, calibrated values produced the best results based on both qualitative and quantitative assessment on the local and regional scales. When considered in combination, the results of both the calibration and sensitivity analysis result in a high level of confidence in the use of the model for simulations of baseflow depletions through time.

Use of the CENEB model should be limited to the intended goals that were identified for the model (Section 1.1). The CENEB model is a regional-scale model with a 1-mile by 1-mile cell size; this type of model is useful for large-scale simulations, i.e., on the watershed or sub-watershed scale. The CENEB model is well suited for an analysis of the BWS in support of annual determinations of basin status. Use of the model for focused, small-scale predictions such as wellfield design or predicting baseflow to tributary streams smaller than the scale included in the SFR2 package is not recommended.

8.2 Potential Model Refinements

While the CENEB model is an appropriate tool for large-scale assessments of groundwater-surface water interactions, certain modifications have been identified that may improve the model's ability to match observed conditions. Based on the results of model calibration and the sensitivity analysis, the predictive ability of the CENEB model could potentially be improved from a focused, localized evaluation of recharge, particularly in the upstream reaches of the Loup River system in the Sand Hills, in South Dakota, and in the furthest downstream reaches of the Elkhorn River. This evaluation could be restricted to improving recharge estimates only, or it could include modifications to groundwater pumping.

The transition to monthly estimates of pumping and recharge beginning in 1986 improved the model's ability to simulate seasonal fluctuations and trends. However, CropSim appears to perform less reliably at the monthly level for calculating recharge during wetter periods, generally resulting in a large influx of water into the aquifer system over a short time period. This aspect of the CropSim-generated recharge inputs could be improved in future model updates.

In addition, future modeling efforts may include refinement of aquifer thicknesses in the northern and northeastern portion of the model domain. Assumptions related to aquifer thickness in these areas have been extrapolated from conditions within the ELM, and generalized in order to produce a viable flow system.

Although model calibration is reasonable and uses a long history of groundwater level and surface baseflow targets, some local areas within the model domain were noted as having minor biases in predicted groundwater levels. These areas of bias are not considered significant given that they represent a balance between groundwater heads, system physical parameters, and surface baseflows. However, additional model testing and calibration in these areas may result in calibration improvements and removal of bias to improve overall model performance.

Section 9

Summary and Conclusions

BC and NDNR collaborated to develop a numerical groundwater flow model of the Lower Niobrara, Loup, and Upper Elkhorn River Basins in central Nebraska (CENEB). The CENEB model was developed to ultimately be used as a primary tool for NDNR's annual evaluation of basin status.

The primary goal of the CENEB model project was to develop an appropriate tool that characterizes the BWS from historical through present day conditions and to use the model to evaluate surface water depletions from the BWS resulting from changes in pumping and recharge associated with irrigation.

9.1 Model Development

The CENEB model utilized parts of an existing flow model (ELM) as a starting point for expansion and refinement to meet NDNR's purposes. Significant refinements and expansions undertaken to create the CENEB model include the following:

- Expanded active model domain, including a portion of South Dakota, to simulate the majority of the Niobrara River Basin
- Revised location and type of boundary conditions, primarily to the north
- Estimated recharge (except canal recharge) and pumping demands based on CropSim, a RSWB model developed for Nebraska
- Increased number of streamflow routing cells to simulate smaller order tributaries
- Monthly stress periods beginning in 1986 to capture seasonality
- Calibration to pre-1940 through 2011 water level measurements and long-term hydrographs of estimated baseflow

An additional refinement to the CENEB model that differentiates it from previous flow models of the region is the use of CropSim, a RSWB model developed for Nebraska. CropSim was used to provide estimates of pumping and recharge as inputs for the CENEB model. Because these prescribed model inputs are inextricably linked, a single method to estimate precipitation recharge, cropland recharge, and irrigation pumping maintained the natural balance between the two main stresses on the aquifer system. The use of CropSim proved to enhance and streamline model development and calibration.

9.2 Model Performance

Following development of the CENEB model, model performance was assessed using defined qualitative and quantitative calibration goals that included evaluation of simulated baseflow, groundwater elevations, and water budgets. The appropriateness of the conceptualization of the groundwater system and the mathematical representation of boundary conditions were also evaluated during calibration, and were found to be reasonable for the objectives of the project. The balance between water levels in the aquifer and baseflow in the streams achieved through calibration represents the best available understanding of groundwater-surface water interactions in the river basins.

A balance between qualitative and quantitative measures of calibration was employed to produce a reasonable representation of the conceptual model and sources of water, while minimizing the discrepancies between observed and measured water levels and baseflow. As such, differences

between the simulated and observed water levels and baseflow were deemed reasonable for the objectives of the project.

The sensitivity analysis results (Tables 7-2 through 7-6) included an evaluation of the changes in the baseflow mass balance that resulted from varying parameters and prescribed model inputs (pumping and recharge). In all cases, variations in these parameters and inputs resulted in a proportional increase or decrease in baseflow, demonstrating the model's ability to simulate changes in baseflow caused by subtle as well as large-scale changes in stresses. The estimated hydraulic parameters and prescribed inputs used in the calibrated model were confirmed by the sensitivity analysis as producing the best overall calibration statistics with a good balance between simulated water levels and baseflows.

9.3 Model Review and Quality Control

The CENEB model was subject to peer review by qualified, senior modeling professionals throughout each step of the model design, conceptualization, construction, calibration, and sensitivity analysis. The model review process included:

- Discussion and confirmation of model conceptualization and assumptions by senior reviewers
- Evaluation of the model design and conceptualization in the context of its intended purpose
- A review of all boundary conditions, including revised boundaries to the north, to ensure that the mathematical representation of the boundaries was reasonable for the project objectives
- Confirmation and verification of model inputs and analyses
- A detailed review of calibrated model input and output in a formalized quality control process
- An evaluation of water budget discrepancies (i.e., percent difference between water in and water out of the aquifer) and solver performance that resulted in the use of MODFLOW-NWT for the project
- A professional review of model concepts and implementation performed by a senior modeler not involved in the model design or development processes, to provide the equivalent of an independent 3rd party review

The review process was designed to ensure reasonable model assumptions and that these assumptions were appropriately implemented within the model code. Descriptions of model setup, calibration, and sensitivity analysis provided in this report were also independently reviewed for completeness and accuracy.

9.4 Conclusion Statement

Calibration of the CENEB model to steady state pre-1940 groundwater conditions and to transient conditions from 1940 through 2011 demonstrates the model's ability to simulate known long-term fluctuations in land use, recharge, pumping, groundwater flow, and groundwater-surface water interactions. The quantitative and qualitative calibration goals of the project were met and exceeded in every case. This level of calibration, verified spatially and at multiple time periods, demonstrates the model's ability to reproduce long-term trends under varying hydrologic and hydrogeologic conditions (Section 6), and that the model reasonably represents known surface water and groundwater flow conditions. Furthermore, a sensitivity study was performed to evaluate the response of the CENEB model calibration to changes in selected model input parameters and stresses (Section 7). The sensitivity analysis indicated that the model is sensitive to moderate shifts in pumping and very sensitive to variability in recharge. The strength of the CENEB model calibration, confirmation of the model conceptualization with respect to the model purpose, and the demonstration of model sensitivity to changes in groundwater pumping and recharge support the conclusion that the model is an appropriate tool for assessing the BWS and baseflow depletions within the model domain.

References

- American Society for Testing and Materials (ASTM), 2000. Standard Guide for Documenting a Ground-Water Flow Model Application, D 5718-95 (Reapproved 2000).
- Anderson, Mary P., and William W. Woessner, 1992. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic Press, San Diego, 1992.
- Arnold, J. G. and Allen, P. M., 1999. Validation of Automated Methods for Estimating Baseflow and Groundwater Recharge from Stream Flow Records. Journal of American Water Resources Association, 35:411-424.
- Bentall, R., and F. B. Schaffer, 1979, Availability and Use of Water in Nebraska, 1975. University of Nebraska, Conservation Survey Division, Nebraska Water Survey Paper 48.

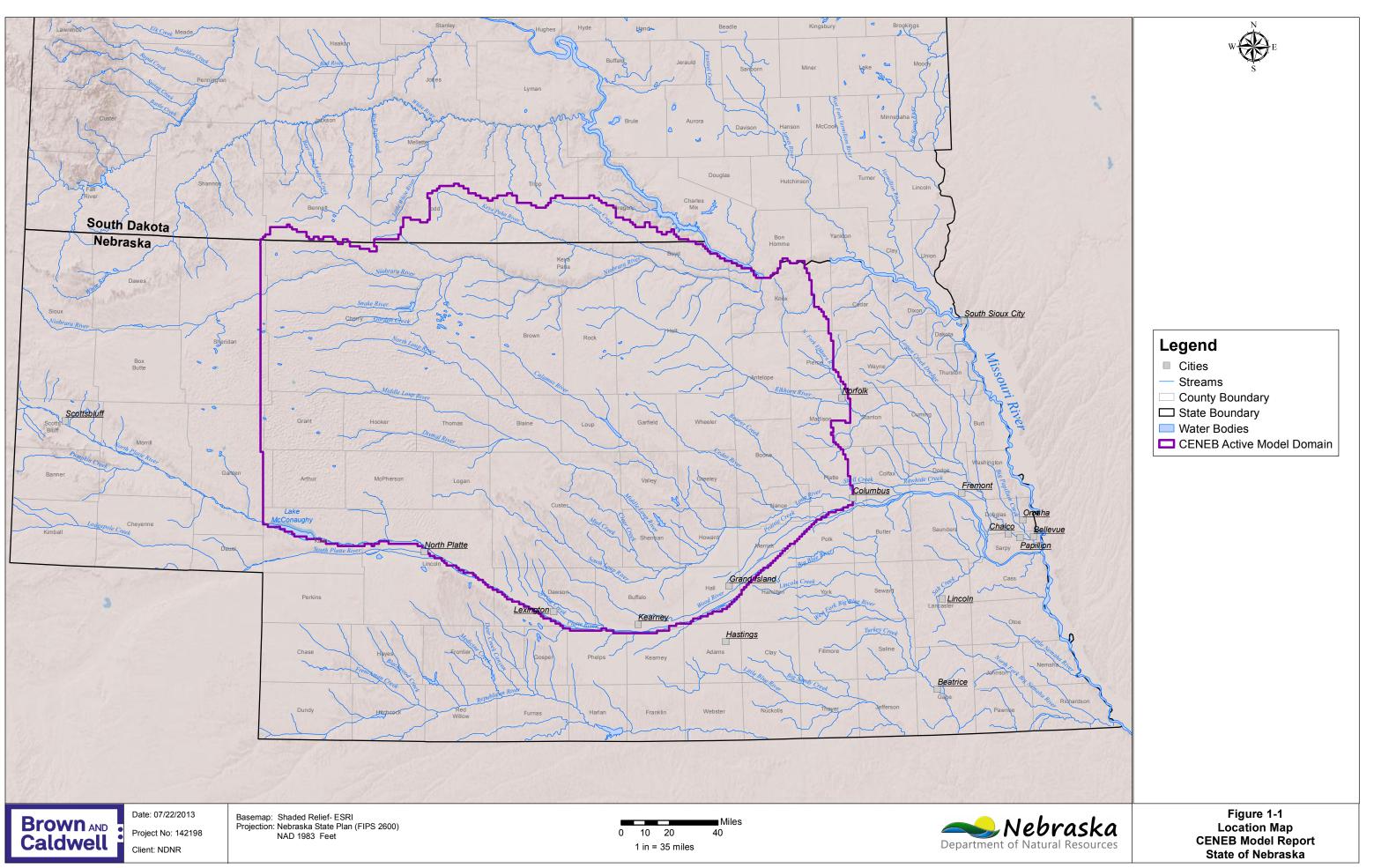
Blue Marble Geographics, 2013, Global Mapper[™] software.

- Center for Advanced Land Management Information Technologies (CALMIT), 2007. 2005 Nebraska Land Use Patterns: Lincoln Nebraska CALMIT, remote-sensing image, scale 1:100,000, accessed October 2011 at http://www.calmit.unl.edu/2005landuse/statewide.shtml.
- Chen, X., Chen X., Rowe, C., Hu, Q., and Anderson M., 2003. "Geological and Climatic Controls on Streamflows in the Nebraska Sand Hills," *Journal of the American Water Resources Association*, 39(1):217-228.
- Chen, X. and X. Chen, 2004. Simulating the Effects of Reduced Precipitation on Ground Water and Streamflow in the Nebraska Sand Hills, Journal of the American Water Resources Association (JAWRA), 40(2):419-430.
- Conservation and Survey Division, 1973. Topographic Regions Map of Nebraska, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln.
- Conservation and Survey Division, 1996. *Configuration of the Water Table,* 1979, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, digital data.
- Conservation and Survey Division, 2003. 1995 Water Table Contours, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, digital data.
- Conservation and Survey Division, 2010. Development of Niobrara Basin Hydrogeologic and Hydrostratigraphic Framework – Completion Report, School of Natural Resources, University of Nebraska-Lincoln, June.
- Doherty, John, 2008a. PEST, Model Independent Parameter Estimation User Manual (5th ed): Brisbane, Australia, Watermark Numerical Computing.
- Doherty, John, 2008b. PEST, Model Independent Parameter Estimation Addendum to user manual (5th ed): Brisbane, Australia, Watermark Numerical Computing.
- Environmental Simulations, Inc., 2011, Guide to Using Groundwater Vistas, version 6.
- Esri, 2011, ArcGis[™] software, version 10.1.
- Esri, 2013, ArcGis[™] digital data.
- Filipovic, D., 2004. Hydrogeologic Assessment of the High Plains Aquifer in Tripp and Gregory Counties, South Dakota, South Dakota Geological Survey Open File Report 90-UR.

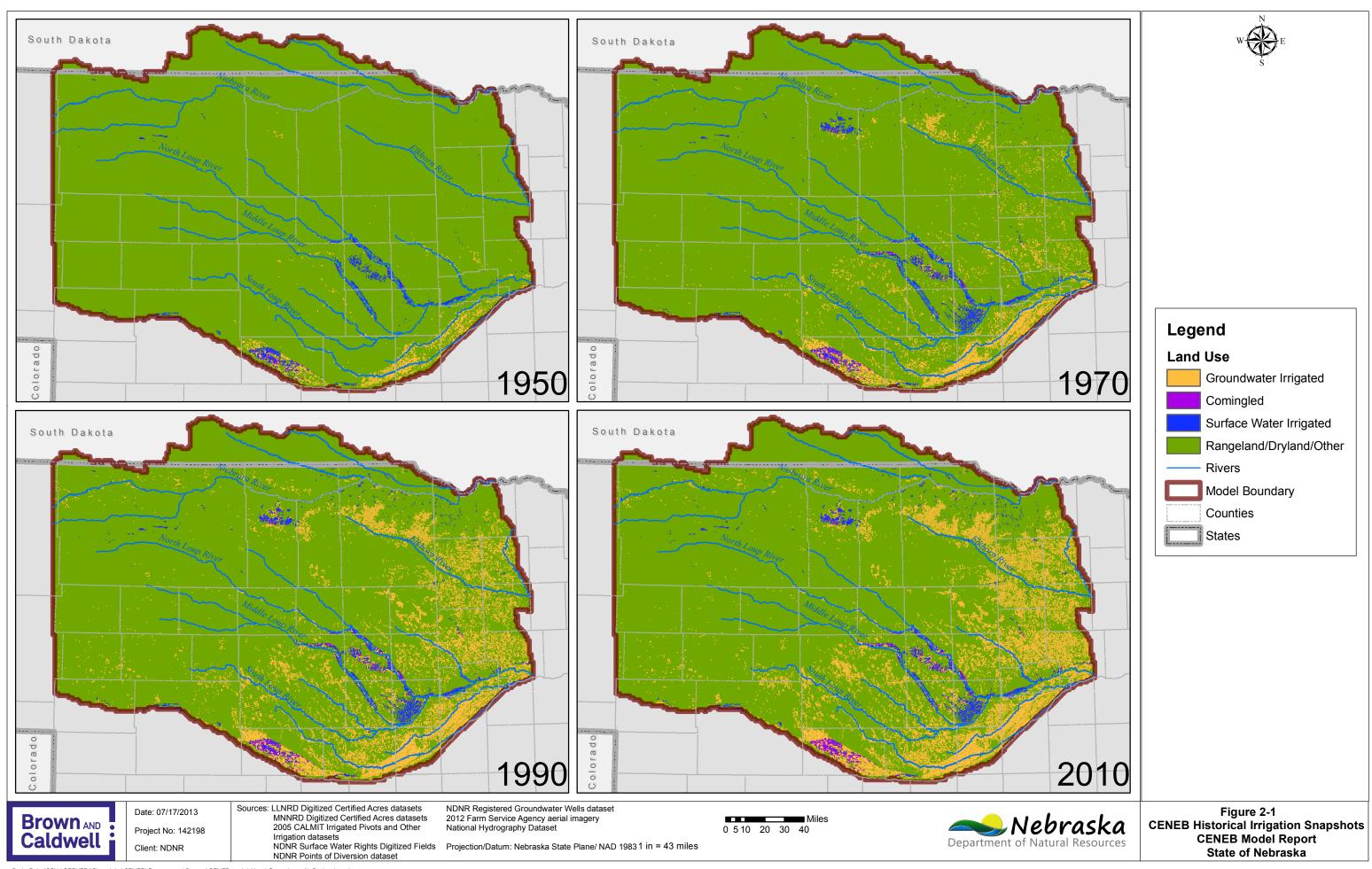
The Flatwater Group, in progress. Central Nebraska (CENEB) Model: Regionalized Soil Water Balance Model.

- Golden Software, Inc., 2008, Surfer® software.
- Gutentag, E. D., Heimes, F. J., Korthe, N. C., Luckey, R. R., and Weeks, J. B., 1984. Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, U.S. Geological Survey Professional Paper 1400-B, 63 p.

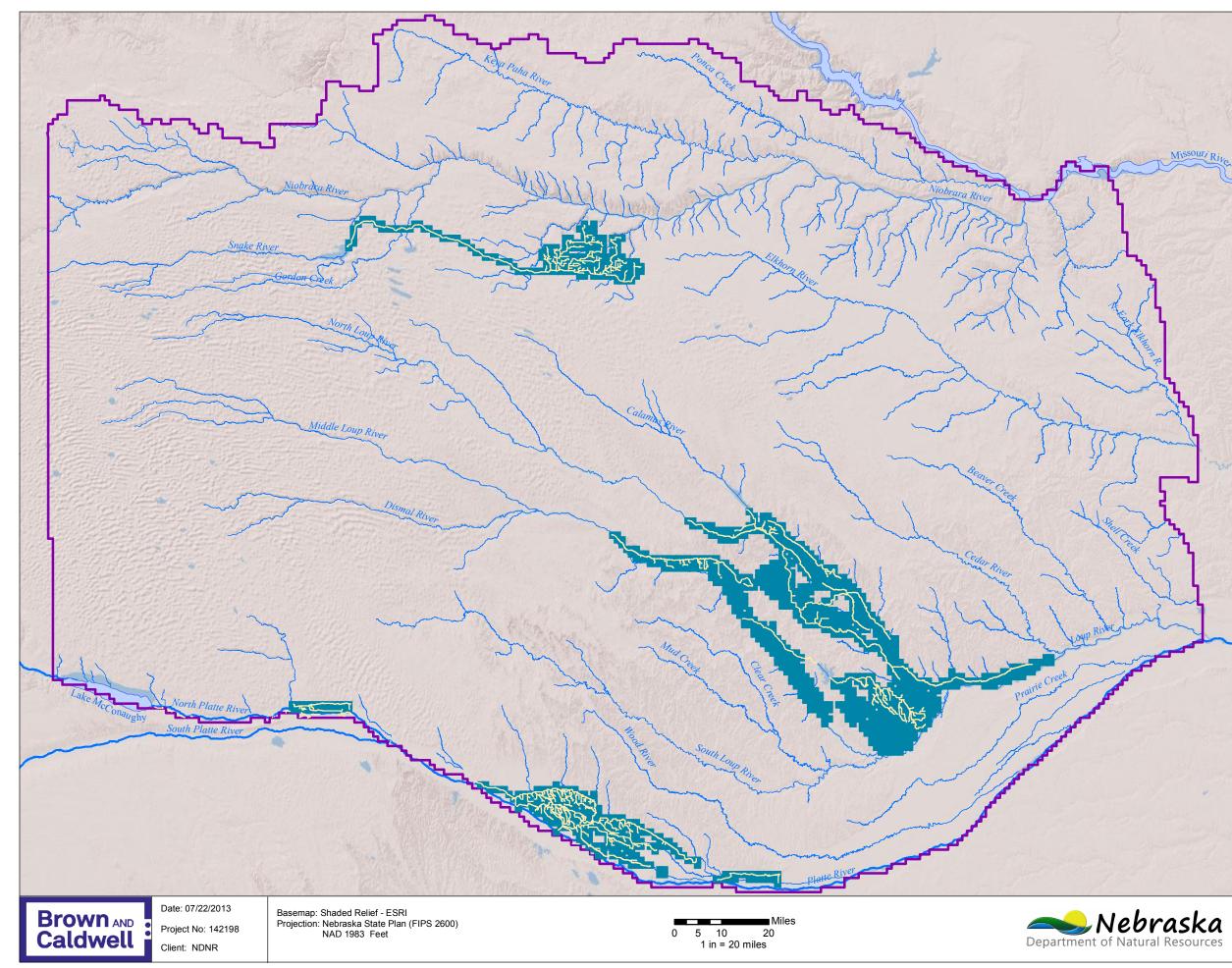
- Harbaugh, A. W., MODFLOW-2005, the U.S. Geological Survey Modular Ground-Water Model The Ground-Water Flow Process, U.S. Geological Survey Techniques and Methods 6 A16, 2005, 253 pp.
- Kolm, K. E., and Case, H. L. III, 1983. A Two-Dimensional, Finite-Difference Model of the High Plains Aquifer in Southern South Dakota, U.S. Geological Survey Water-Resources Investigations Report 83-4175.
- Long, A. J., Putnam, L. D., and Carter, J. M., 2003. Simulated Ground-Water Flow in the Ogallala and Arikaree Aquifers, Rosebud Indian Reservation Area, South Dakota, U.S. Geological Survey, Scientific Investigations Report 03-4043, Reston, Virginia, 69 p.
- Long, A. J. and Putnam, L. D., 2010. Simulated Groundwater Flow in the Ogallala and Arikaree Aquifers, Rosebud Indian Reservation Area, South Dakota – Revisions with Data Through Water Year 2008 and Simulations of Potential Future Scenarios, U.S. Geological Survey, Scientific Investigations Report 2010-5105, 54 p.
- Lyne, V. D. and Hollick, M. 1979. Stochastic time-variable rainfall-runoff modeling. Hydrology And Water Resources Symposium, Institution of Engineers Australia, Perth. pp. 89-92.
- Malo, 1997. South Dakota's Physiographic Regions fact sheet, Northern State University CUEST Center for Environmental Education, Aberdeen, SD, http://www3.northern.edu/natsource/EARTH/Physio1.htm, Date of Access: May 18, 2012.
- Martin, D. L., Watts, D.G., and Gilley, J.R., 1984. *Model and Production Function for Irrigation Management*, Biological Systems Engineering: Papers and Publications. Paper 58.
- McGuire, V. L., 2009. Water-Level Changes in the High Plains Aquifer, Predevelopment to 2007, 2005-06, and 2006-07. U. S. Geological Survey Scientific Investigations Report 2009-5019.
- McMahon, P. B., Dennehy, K. F., Bruce, B. W., Gurdak, J. J., and Qi, S. L., 2007. Water-Quality Assessment of the High Plains Aquifer, 1999-2004: U.S. Geological Survey Professional Paper 1749, 136 pp.
- Nathan, R. J. and McMahon, T. A., 1990. Evaluation of automated techniques for baseflow and recession analysis. Water Resources Research, 26, 1465-1473.
- NCDC, 2012. Long-Term Monthly Precipitation Data by Climate Division, National Climatic Data Center, National Oceanic and Atmospheric Administration, http://www.ncdc.noaa.gov/climate-information, digital data.
- NDNR, 2006. DNR Methods Used for Historical Consumptive Use Calculations, May.
- NDNR, 2012. Annual Evaluation of the Determination of Hydrologically Connected Water Supplies; Determination of Fully Appropriated, December 21, 2012.
- NDNR, 2013. Land Use Study for the CENEB Model Project, unpublished GIS analysis.
- Nebraska Natural Resources Commission, 1982, *Policy Issue Study on Instream Flows*, Conservation and Survey Division, University of Nebraska-Lincoln.
- Niswonger, R. G. and Prudic, D. E., 2010. Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams – A modification to SFR1, U.S. Geological Survey Techniques and Methods 6 – A13, Version 1.30, April 2010, 50 pp.
- Niswonger, R. G., Panday, S., and Ibaraki, M., 2011. MODFLOW-NWT, A Newton Formulation for MODFLOW-2005, U.S. Geological Survey Techniques and Methods 6 A37, 2011, 44 pp.
- Peterson, S. M., Stanton, J. S., Saunders, A. T., and Bradley, J. R., 2008. Simulation of Ground-water Flow and Effects of Ground-water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska: U.S. Geological Survey Scientific Investigations Report 2008-5143, 65 p.
- Peterson, S. M., and Strauch, K. R., 2007. Streamflow Measurements in North-Central Nebraska, November 2006: U.S. Geological Survey Data Series 332, 29 p.
- Prudic, David E., Konikow, Leonard and Banta, Edward, A New Streamflow-Routing (SFR1) Routing Package to Simulate Stream-Aquifer Interaction with MODFLOW-2002, U.S. Geological Survey Open-File Report 2004-1042.
- Rahn, P. H., and Paul, H. A., 1975. Hydrogeology of a Portion of the Sand Hills and Ogallala Aquifer, South Dakota and Nebraska, *Ground Water*, Vol. 13, No. 5, September-October 1975.


- Reilly, T.E., and Harbaugh, A.W., 2004. Guidelines for Evaluating Ground-Water Flow Models, U.S. Geological Survey Scientific Investigations Report 2004-5038, Version 1.01, 30 p.
- Soenksen, P. J., B. B. Flyr, J. S. Alexander, and N. J. Schaepe, 2010, *Streamflow Gains and Losses in the Niobrara River Basin*, Nebraska, 1980 and 2009, Journal of Environmental Hydrology, Volume 18.
- Stanton, J. S., Peterson, S. M., and Fienan, M. N. 2010. Simulation of Groundwater Flow and Effects of Groundwater Irrigation on Stream Base Flow in the Elkhorn and Loup River Basins, Nebraska, 1895-2055 – Phase Two. Scientific Investigations Report 2010-5149.
- Szilagyi, J., Harvey, F. E., and Ayers, J. F., 2003. "Regional Estimation of Total Recharge to Ground Water in Nebraska," Ground Water 43, no. 1: 63-69.
- Szilagyi, J. and Jozsa, J., 2012, MODIS-Aided Statewide Net Groundwater-Recharge Estimation in Nebraska, unpublished study.
- United States Fish and Wildlife Service (USFWS), 2013. National Wetlands Inventory, digital database: http://www.fws.gov/wetlands/.

United States Geological Survey (USGS) 2012. National Hydrography Dataset: http://nhd.usgs.gov/.

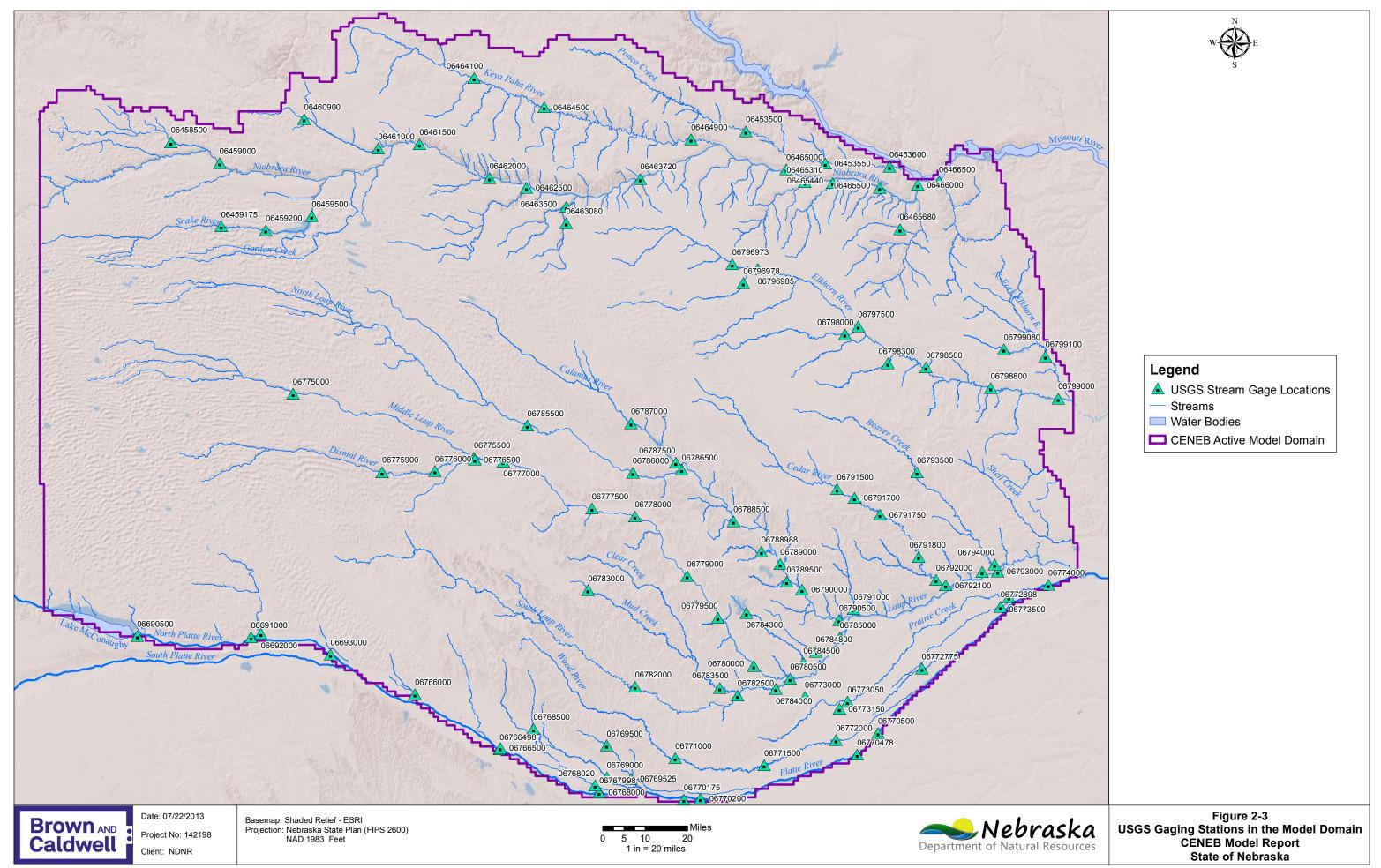


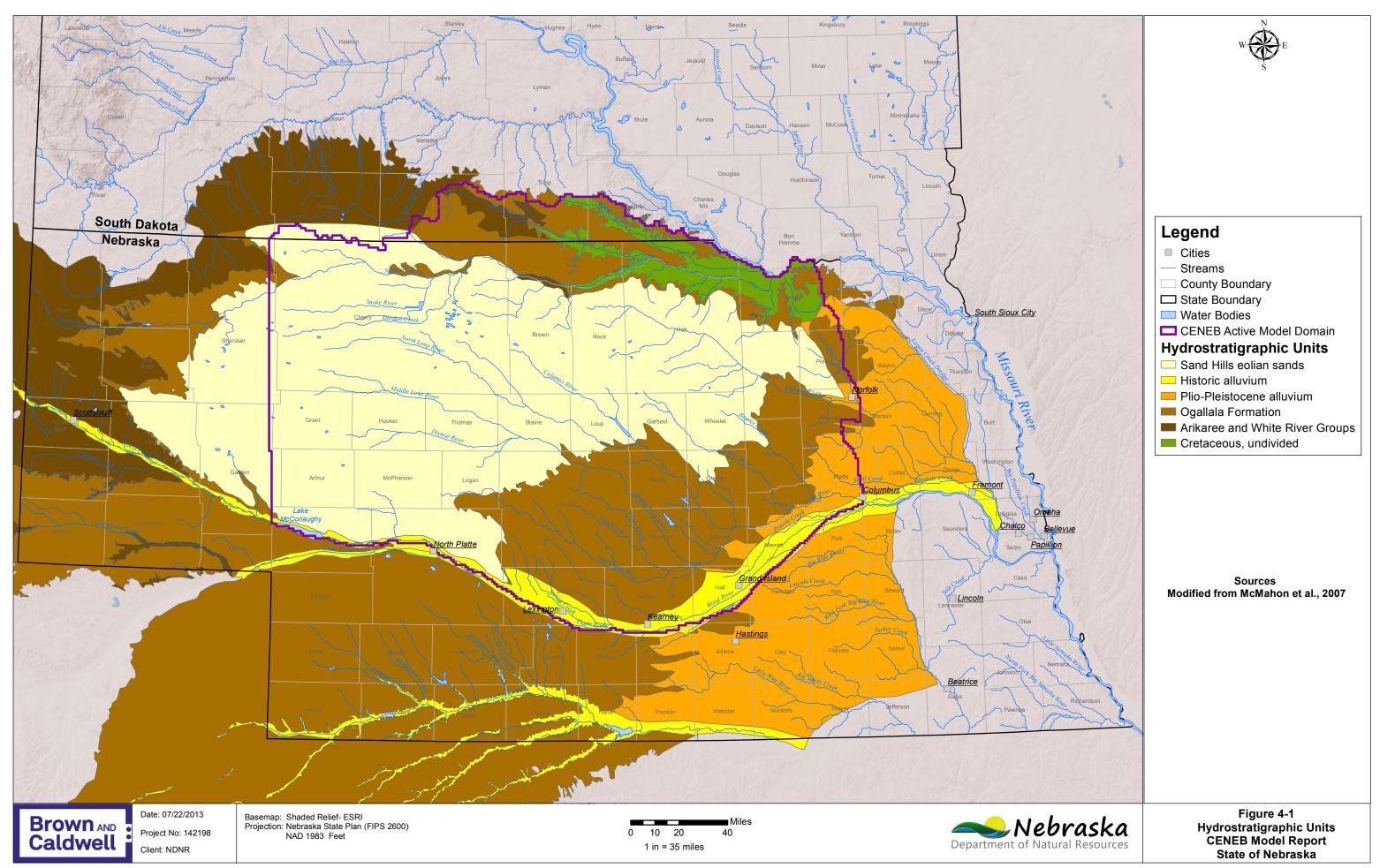
Figures



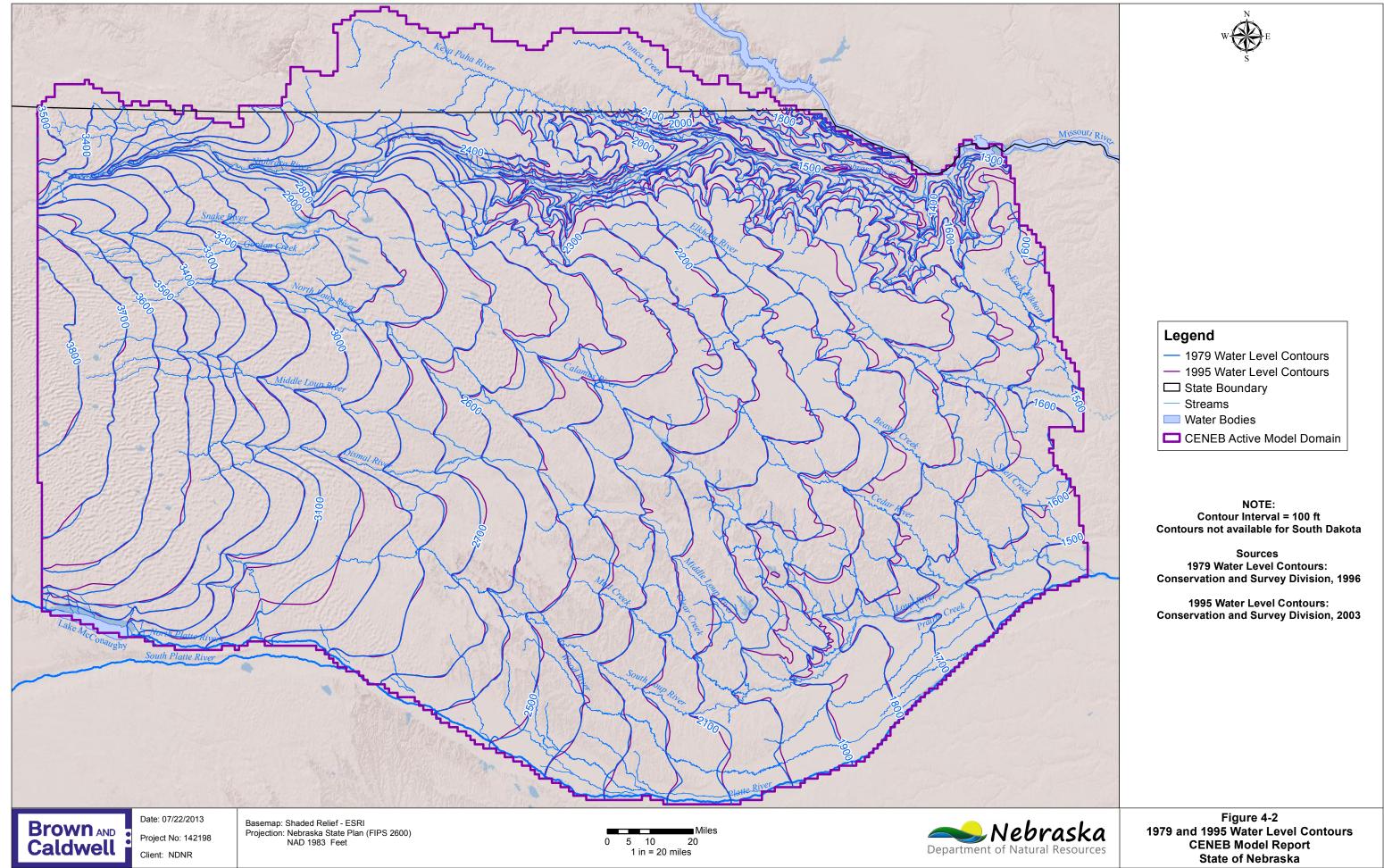
Path: Bcboi02\J:\Nebraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures\Figure_1-1_Template1_11x17L.mxd

Path: Bcboi02\\\SERVER16\awright\CENEB\Documents\figures\CENEBmodelsYearlySnapshots_NoDryland.mxd


Path: Bcboi02\J:\Nebraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures\Figures_2-2_2-3_4-2 StreamsCanalsGages WLContours.mxd

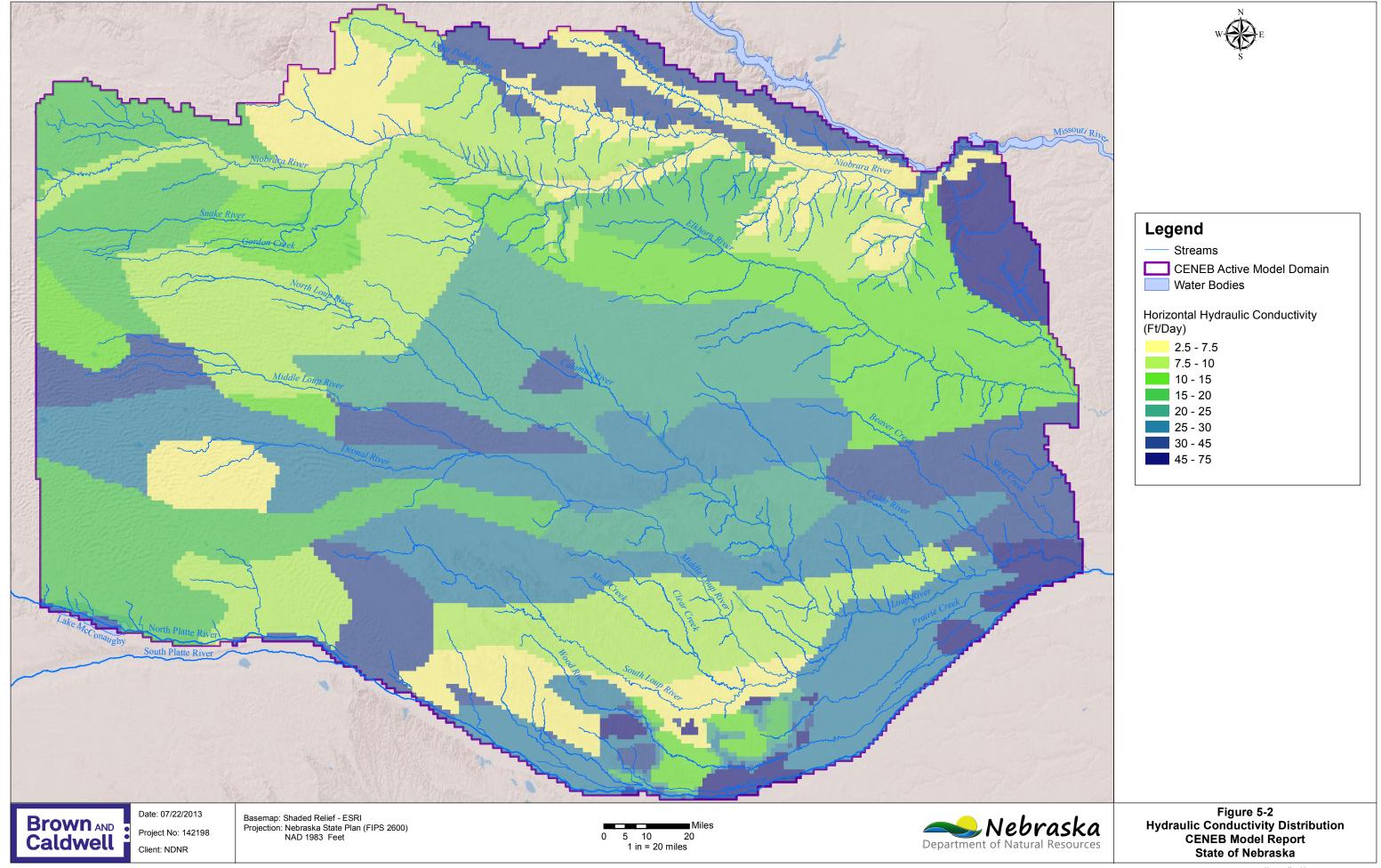

Legend

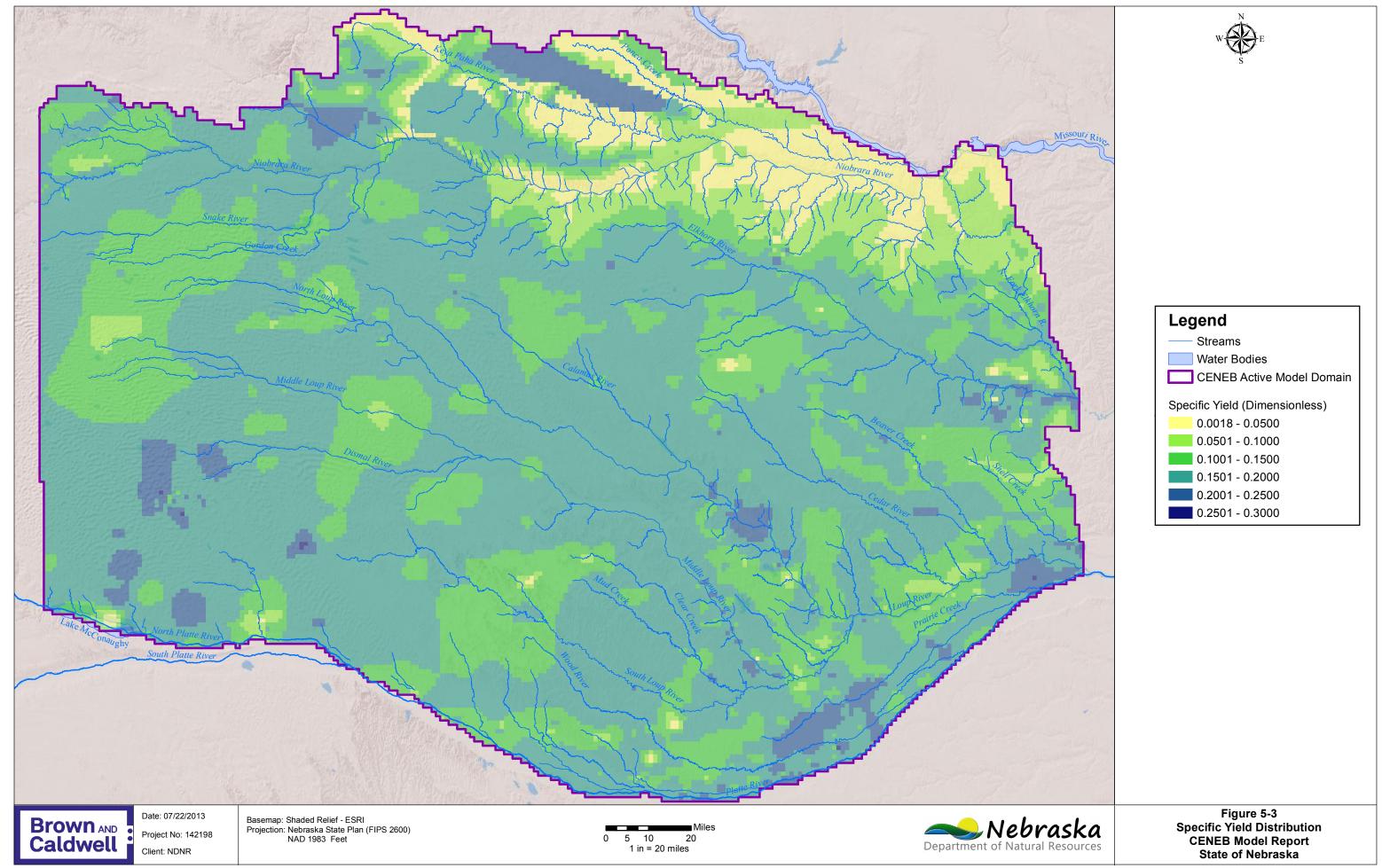
- Irrigation Districts/Canal Companies
- Streams
- Canals and Laterals
- Water Bodies
- CENEB Active Model Domain


Figure 2-2 Streams, Irrigation Districts, and Canals CENEB Model Report State of Nebraska

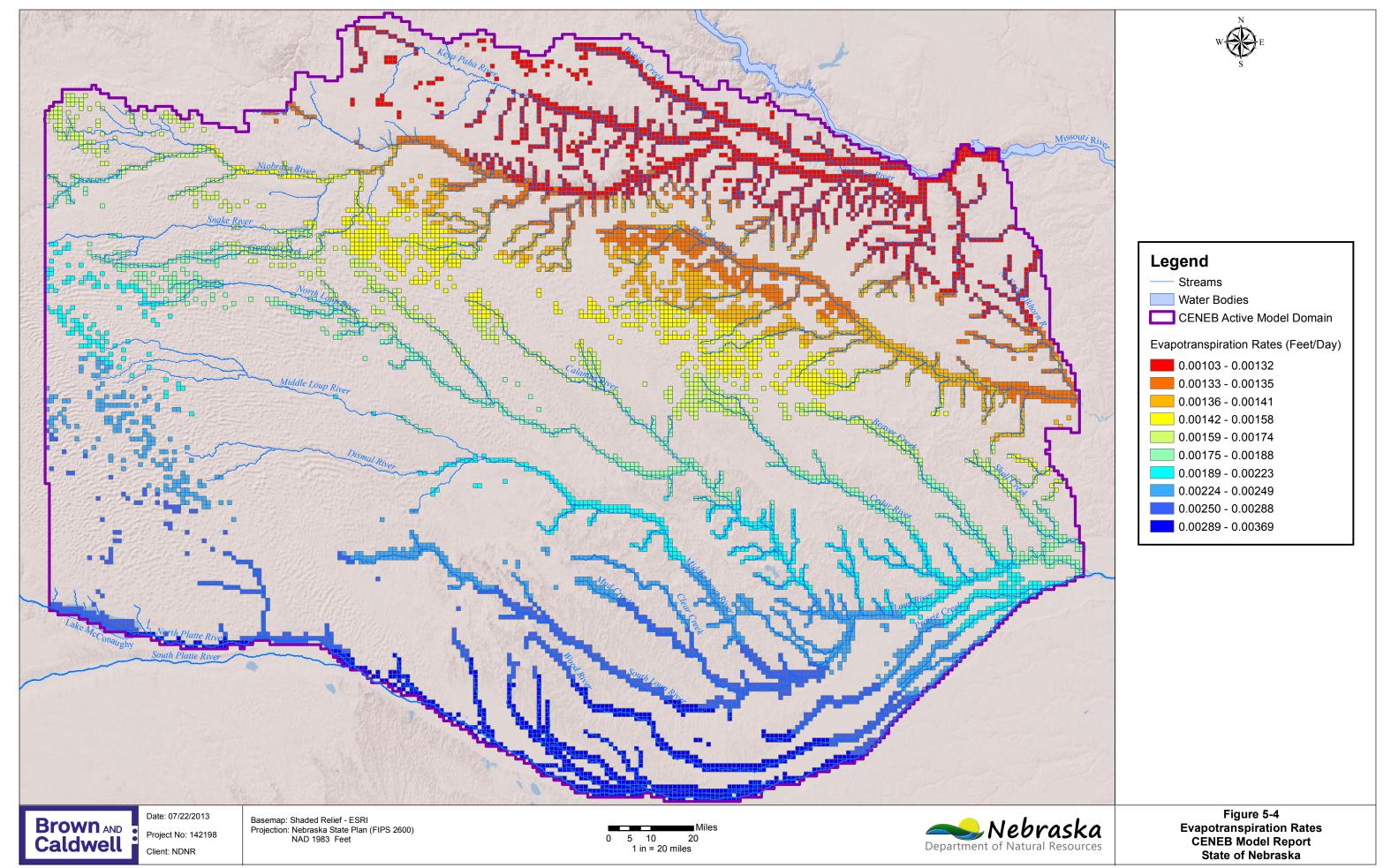
Path: Bcboi02\J:\Nebraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures\Figures_2-2_2-3_4-2 StreamsCanalsGages WLContours.mxd

Path: Bcboi02\J:\Nebraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures\Figure_3-1_largeScale_Geology_20130712.mxd

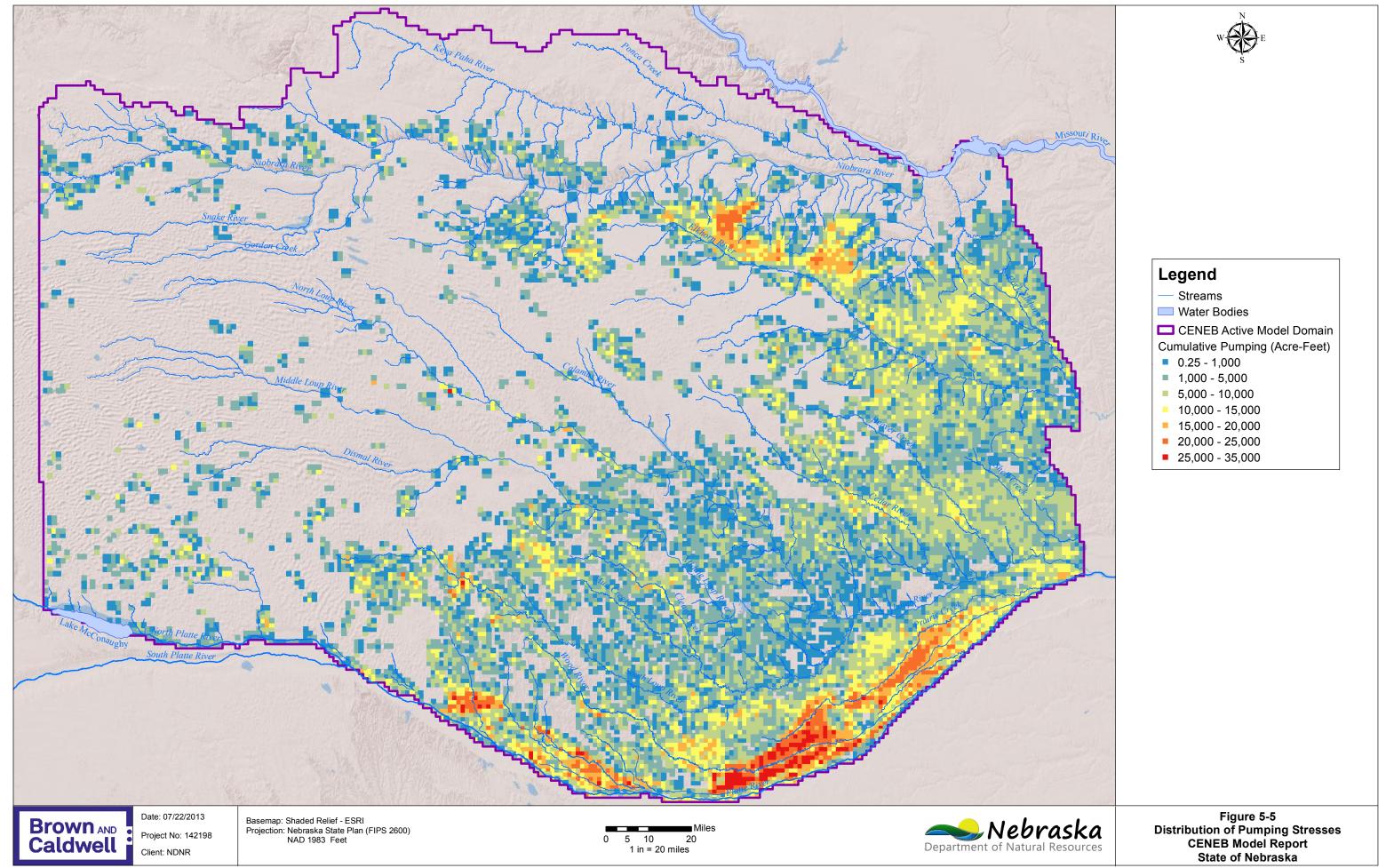

Streams Water Bodies

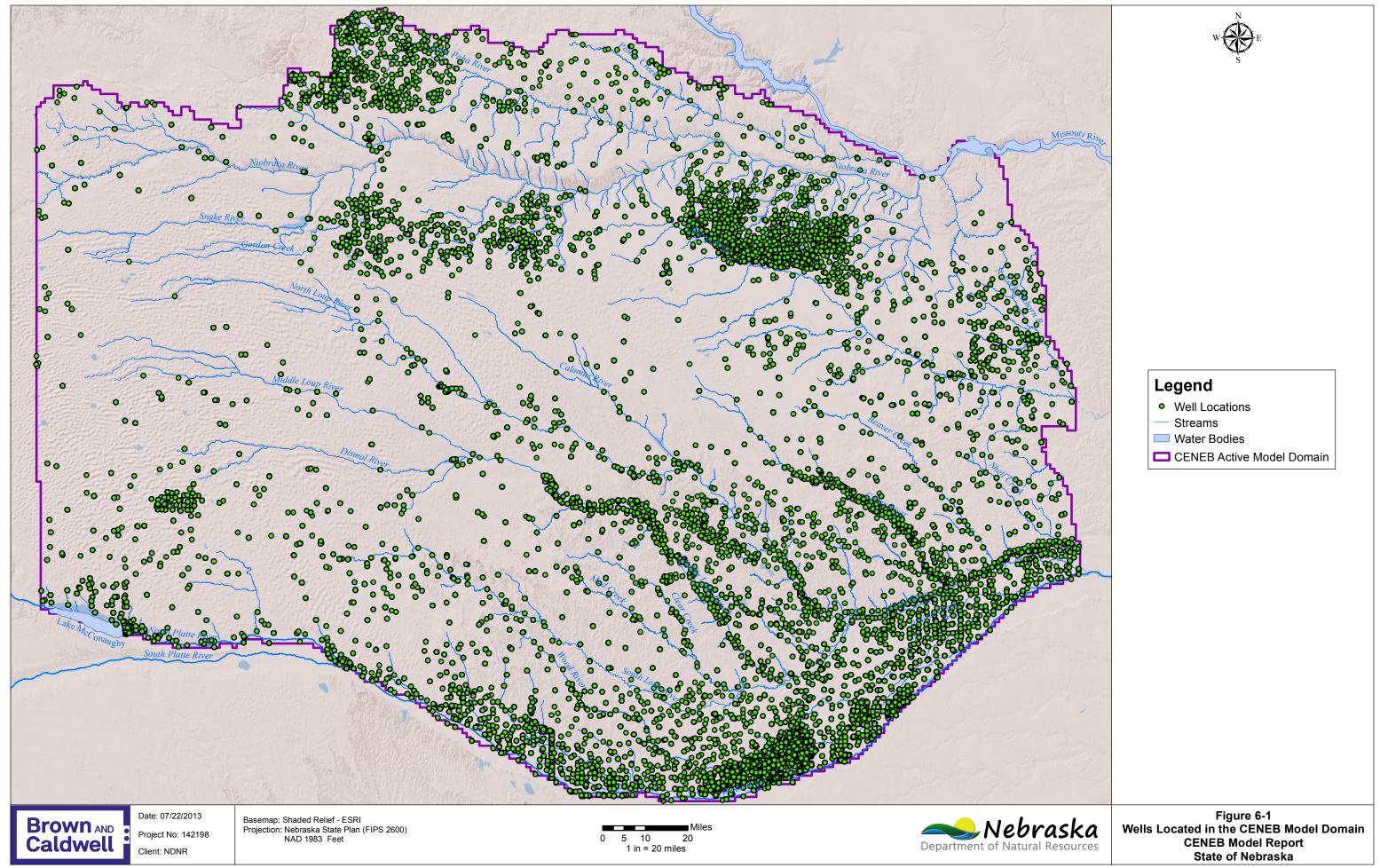

Stream Cells (SFR2)

No-Flow Boundary General Head Boundary Constant Head Boundary

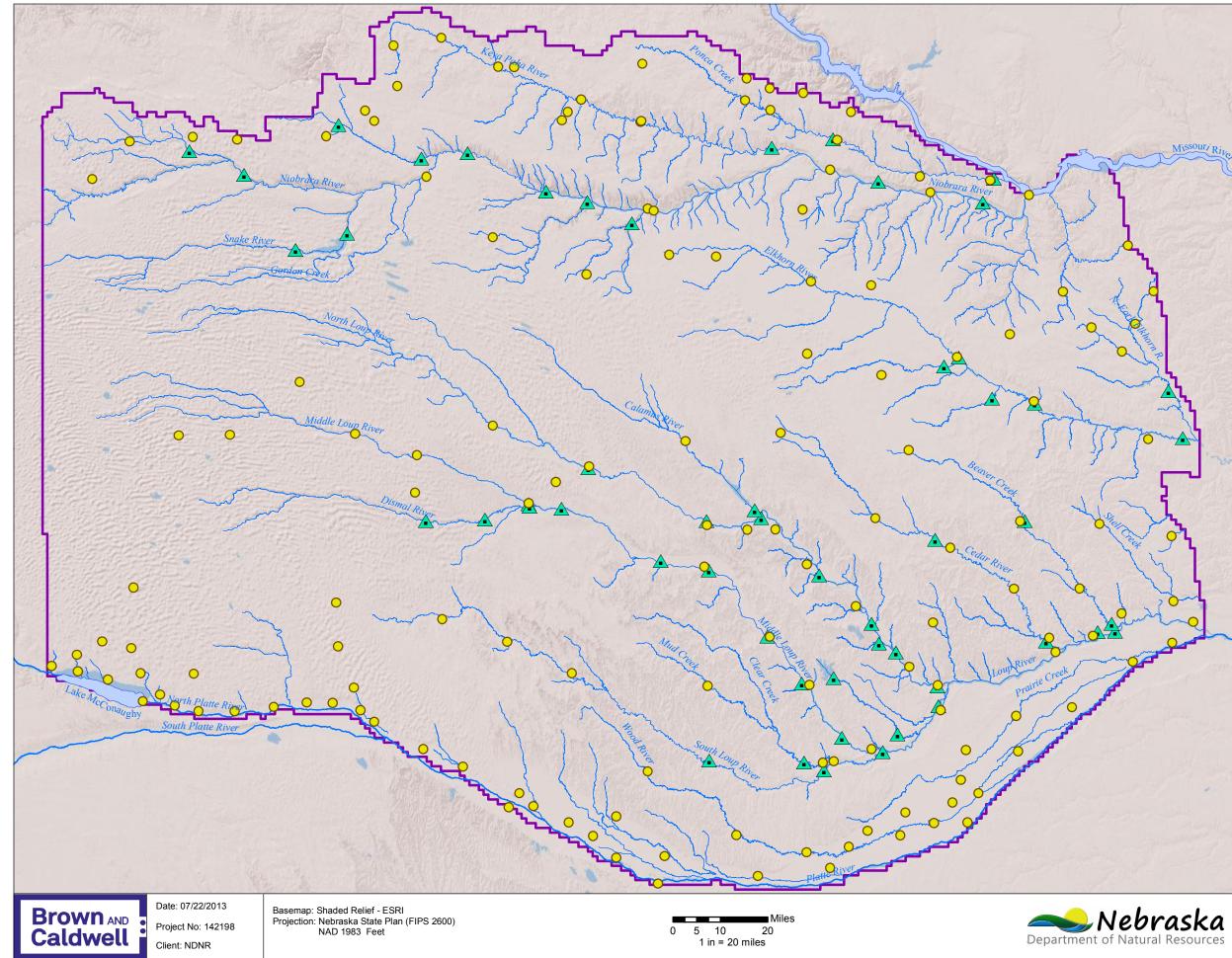

Figure 5-1 Boundary Conditions and Stream Cells CENEB Model Report State of Nebraska

User: jwright





User: ccikoski

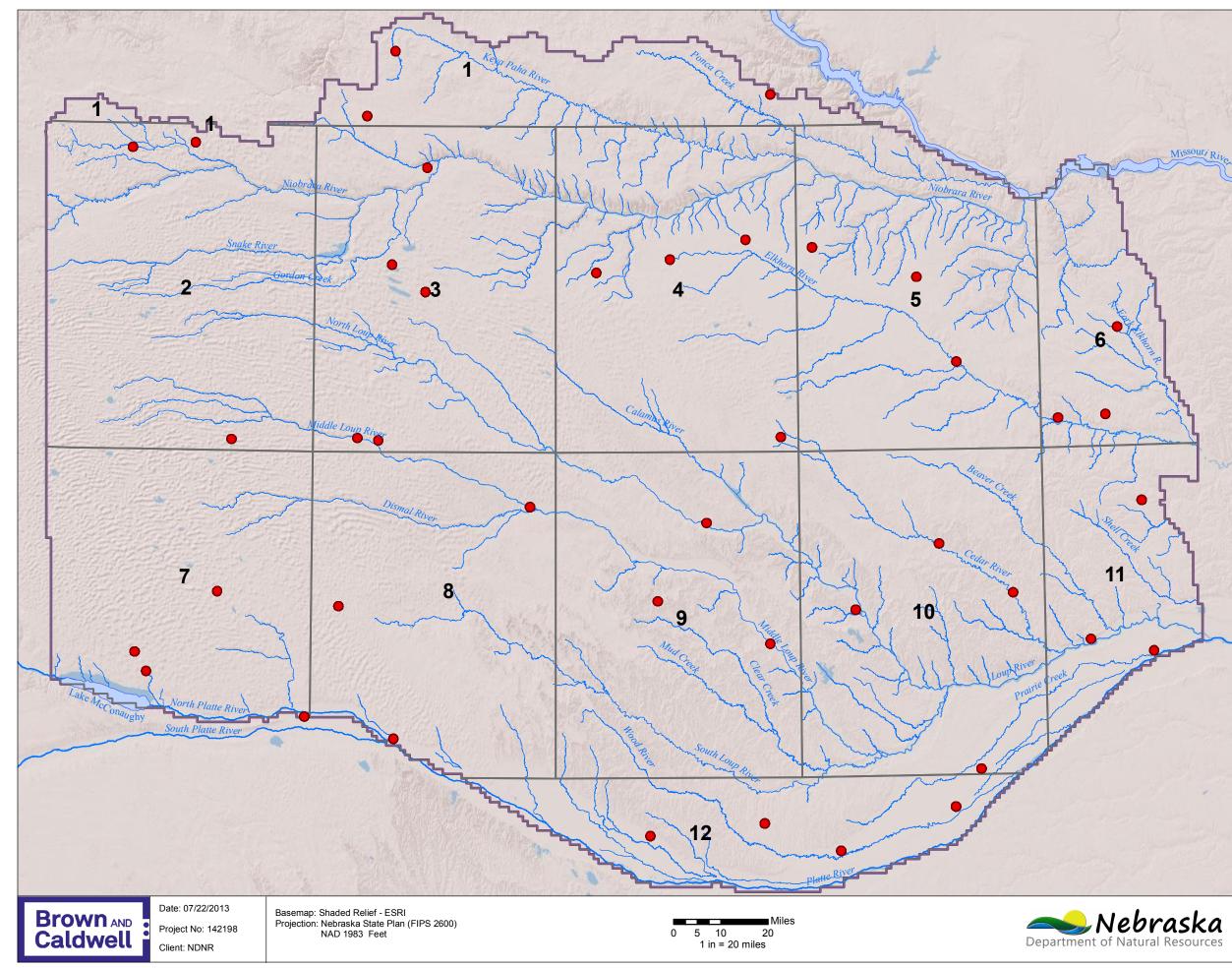


Path: Bcboi02\J:\Nebraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures\Temp\Fig5-4_Evapotrans_JJT_06142013.mxd

Path: Bcboi02\J:\Nebraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures_F-5_6-1_6-2_6-3_6-4 Pumping and Wells_ctc20130610.mxd

Path: Bcboi02\J:\Nebraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures_Figures_5-5_6-1_6-2_6-3_6-4 Pumping and Wells_ctc20130610.mxd

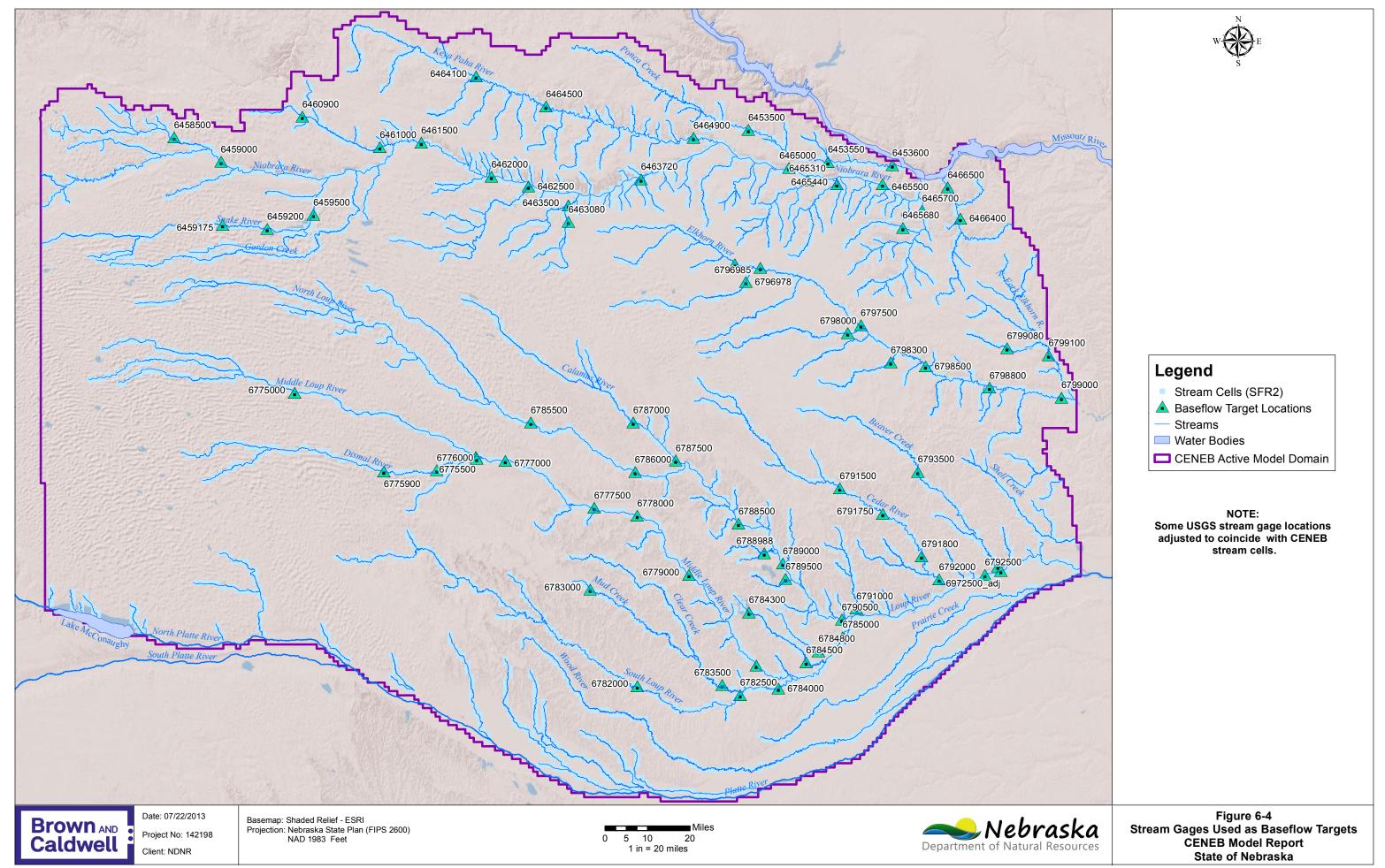
Legend

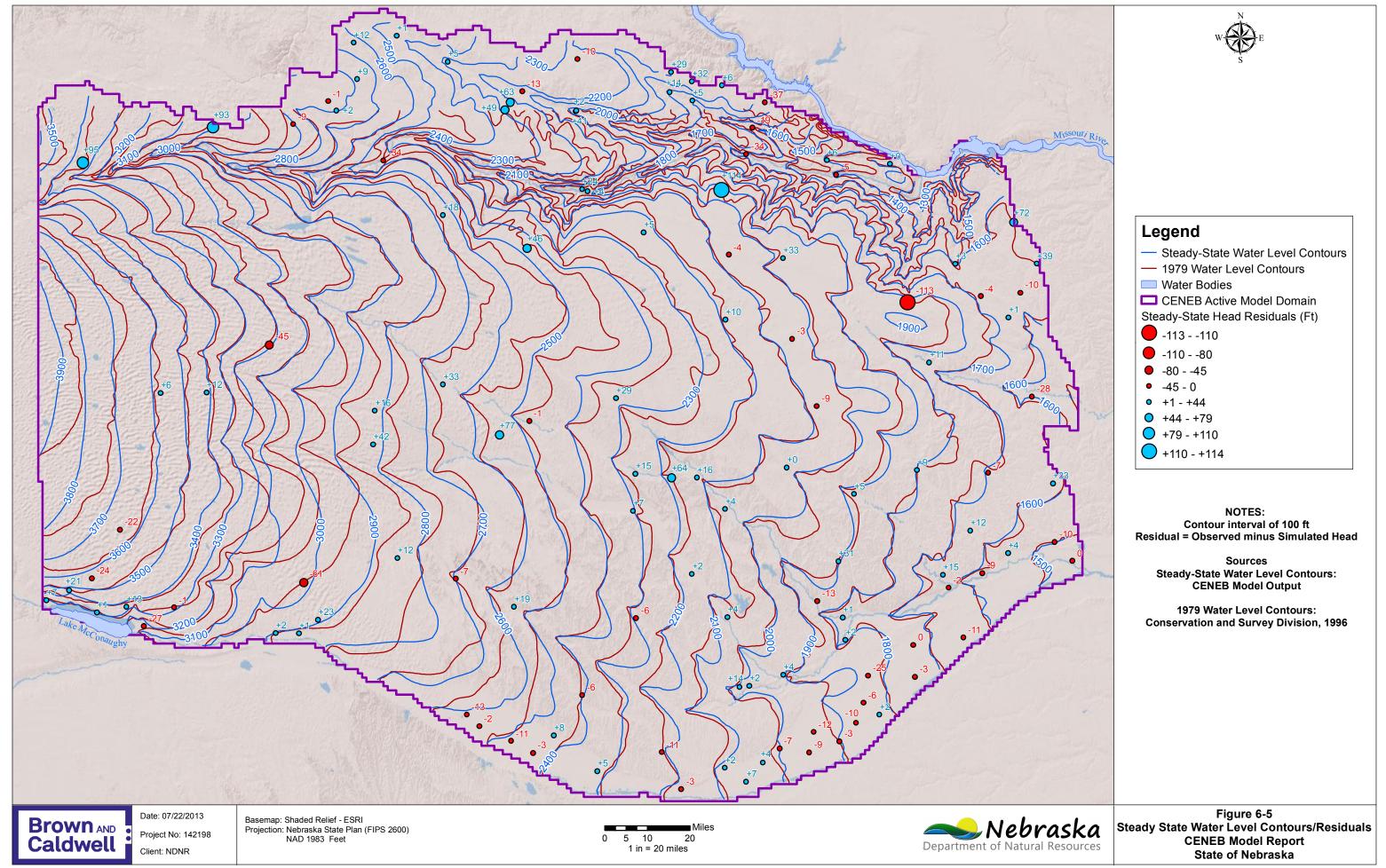

- ▲ Steady State Baseflow Targets
- Steady State Well Targets
- Streams
- Water Bodies
- CENEB Active Model Domain

NOTE: Some USGS stream gage locations adjusted to coincide with CENEB stream cells.

Figure 6-2 Steady State Calibration Targets CENEB Model Report State of Nebraska

User: ccikoski


Path: Bcboi02\/:\Nebraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures\Figures_5-5_6-1_6-2_6-3_6-4 Pumping and Wells_ctc20130610.mxd


Legend

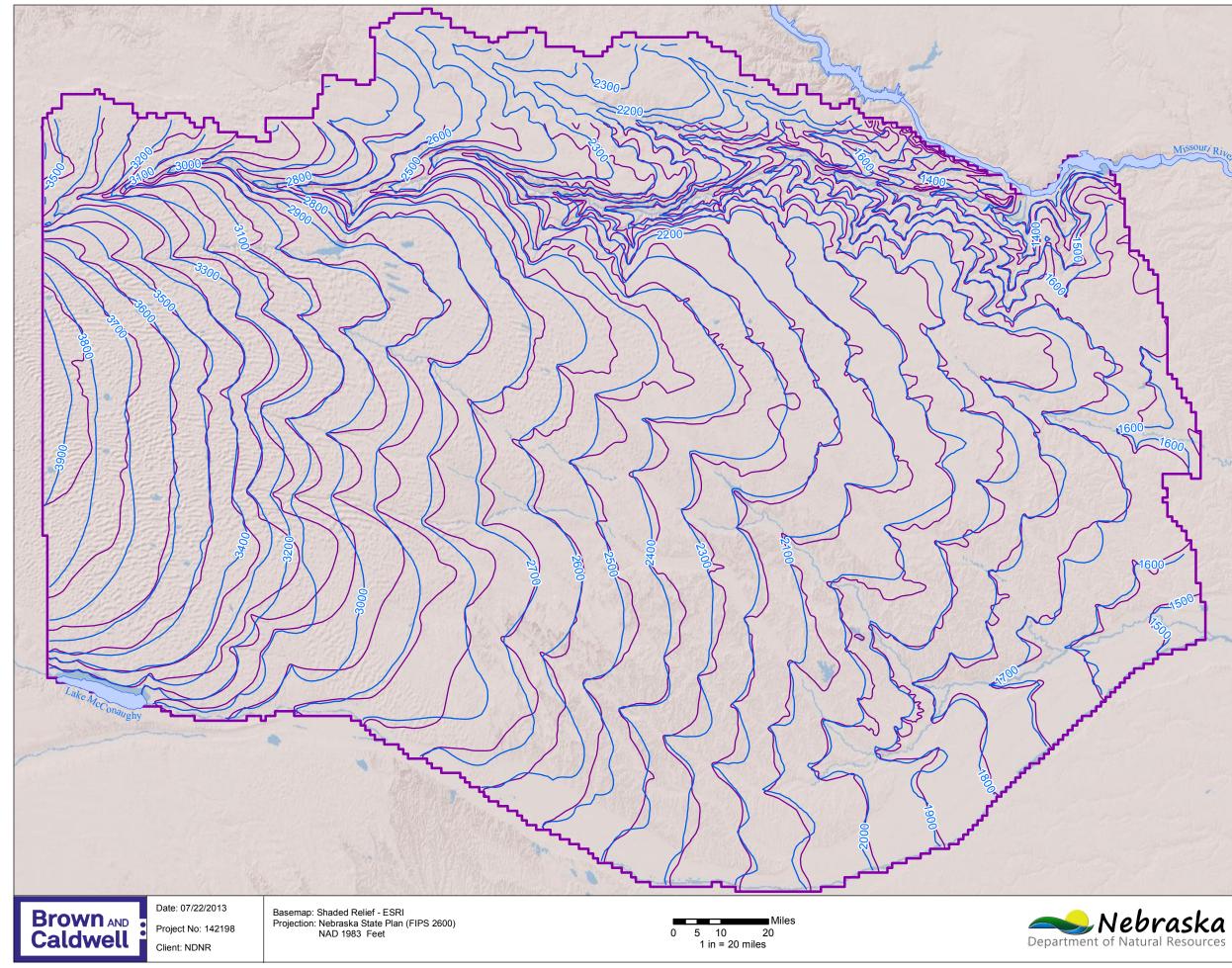
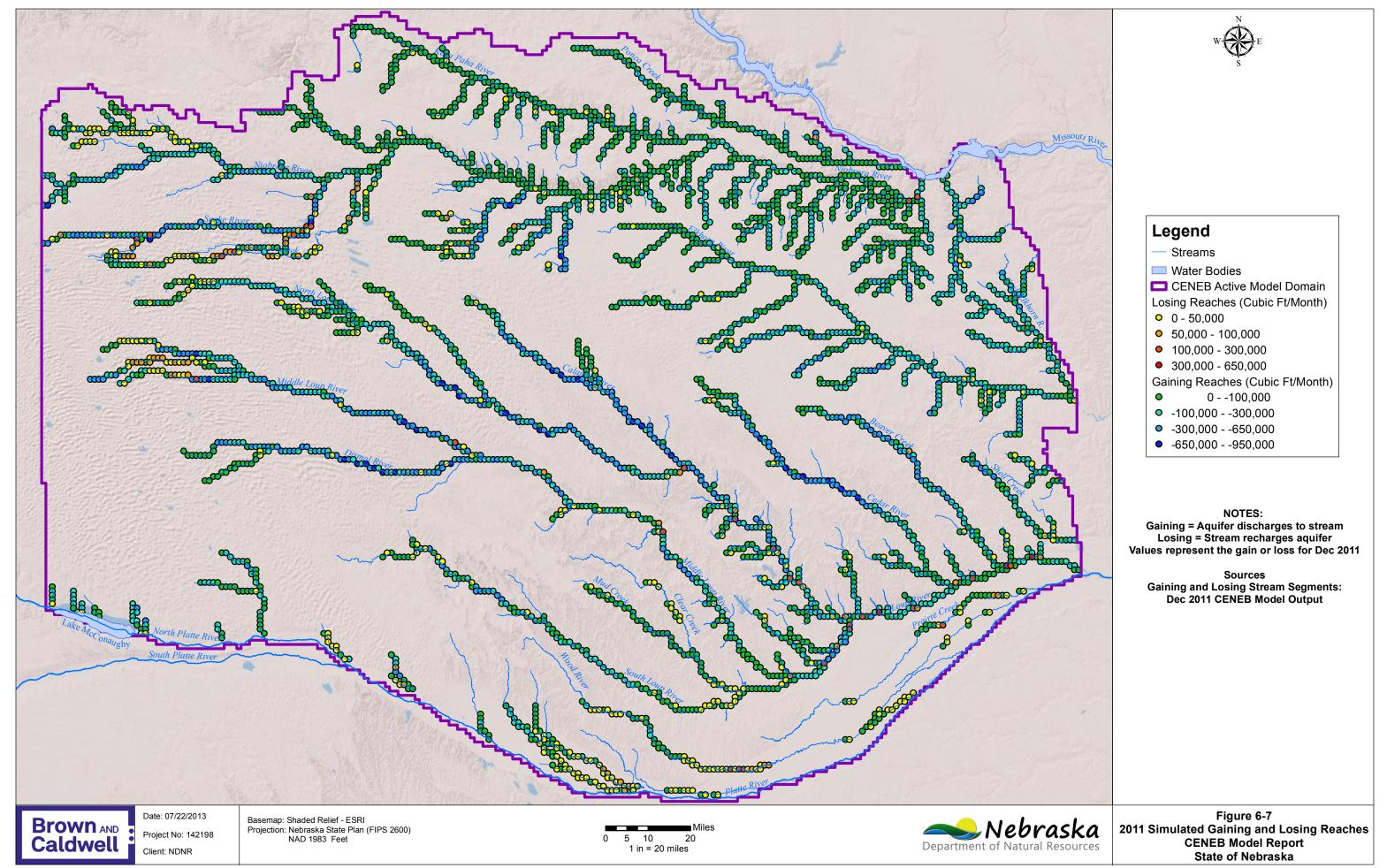

- Wells with Long-Term Hydrographs
- Streams
- Target Zones 1-12
- Water Bodies
- CENEB Active Model Domain

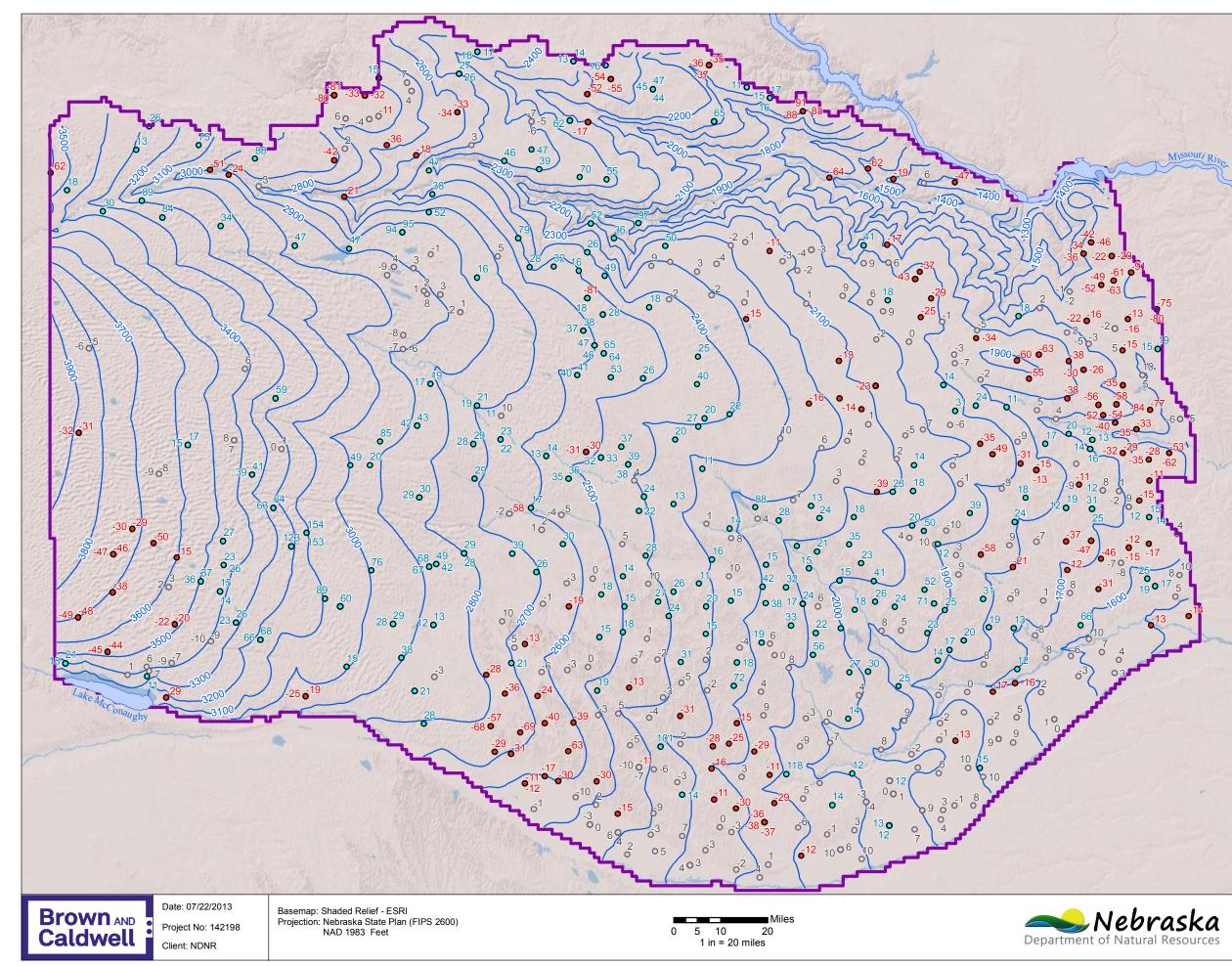
Figure 6-3 Well Targets with Long-Term Hydrographs CENEB Model Report State of Nebraska

Path: Bcboi02\J:\Nebraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures\Figures_5-5_6-1_6-2_6-3_6-4 Pumping and Wells_ctc20130610.mxd

Legend


- 1995 Simulated Water Level Contours
- 1995 Observed Water Level Contours
- Water Bodies
- CENEB Active Model Domain

NOTE: Contour Interval = 100 ft


Sources 1995 Simulated Water Level Contours: Dec 1995 CENEB Model Output

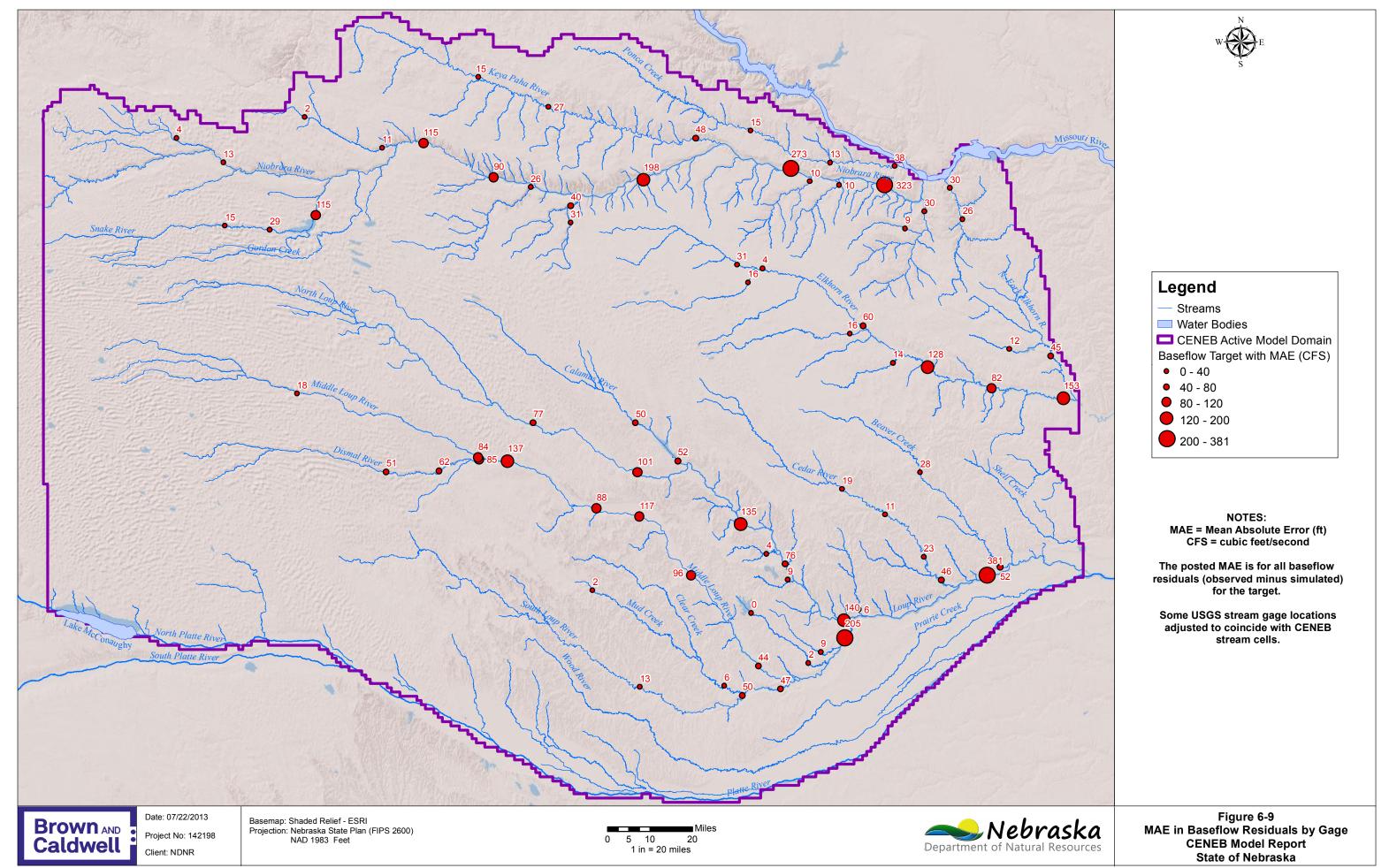
1995 Observed Water Level Contours: Conservation and Survey Division, 2003

Figure 6-6 Observed vs. Simulated Water Level Contours CENEB Model Report State of Nebraska

Path: Bcboi02\J:\Webraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures\Figure_6-8_6-9 Residuals maps.mxd

Path: Bcboi02\J:\Webraska Dept of Natural Resources\142198 - NDNR Phase II - CENEB Model\GIS\MXDs\ReportFigures\Figure_6-8_6-9 Residuals maps.mxd

Legend


- 2011 Simulated Water Level Contours
- Water Bodies
- CENEB Active Model Domain
- 2011 Head Targets with Residuals (Ft)
- -94 -10
- -10 +10
- +10 +154

NOTES: Contour interval of 100 ft Residual = Observed minus Simulated Head Targets with more than one residual label are wells with multiple measurements in 2011.

Sources 2011 Simulated Water Level Contours: Dec 2011 CENEB Model Output

Figure 6-8 2011 Simulated Water Levels and Residuals CENEB Model Report State of Nebraska

User: ccikoski

User: jwright

Appendix A: Matrix of Data Sources for CENEB

		Table C-1. Matrix Ana	lysis - Phase II E	LM Review	/Assessmen	t	
Model Input, Stress, Boundary or Dataset	Dataset: Source and Description	USGS Approach in ELM Phase II	Variable used in Calibration?	Steady State	Transient (DEV)	Limitations	
MODEL STRUCTURE							
Layer Top	Defined by USGS	Constant elevation (10,000 ft amsl), all cells				Obscures potential issues with model, i.e., flooding	No. S to de
Layer Bottom	Conservation and Survey Division, 1998 Base of Principal Aquifer for the Elkhorn Loup model area, McGuire and Peterson, 2008 Test-hole drilling and surface and borehole geophysics.	Aquifer consists of the Ogallala Group, which overlies silts of the Tertiary-age Arikaree Group across the western one-half of the ELM area, and overlies poorly permeable Cretaceous-age shale and limestone; revised from Phase one based on test-hole drilling and surface and borehole geophysics					Yes
Cell Size		Uniform grid 1 mile by 1 mile (Phase I grid was 2 mile by 2 mile)					No. R Refin accur as cle
Active Model Area		Refined due to the increased grid resolution (versus Phase I). Areas with no aquifer thickness along the Niobrara River remained inactive					No. N Niobi deter
BOUNDARY CONDITIONS							
North – Niobrara River	Conservation and Survey Division 1996a, 1996b); Cretaceous-age bedrock	Stream package (SFR) forms boundary where the Niobrara River exists within the active model domain; areas with no aquifer thickness along the Niobrara River were made no-flow boundaries		J	J		Partia Lowe annu
West - Sand Hills	1995 Water Level Contour Map, Conservation and Survey Division, 2003	Constant heads based on 1995 water level map		J	J		TBD. aquif durin
South – Platte River	Digital Elevation Model with 30-meter resolution (NDNR, 1997)	Lowest point of DEM within model cell to represent groundwater discharge to the Platte River		1	J		Yes, a befor
East – Loess Hills	1995 Water Level Contour Map, Conservation and Survey Division, 2003	Constant heads based on 1995 water level map		1	J		TBD. conce
Lake McConaughy		General Head Boundary: simulated 1940 SS water level used as starting head for DEV simulation. Annual values were either actual values (if higher than SS value) or set at SS level			J	Lake level boundary never set below the simulated SS 1940 level, creates an artificial limit	If repo this c large some
HYDRAULIC PARAMETERS							
Horizontal hydraulic conductivity	Conservation and Survey Division (2005a) ; Goeke and others, 1992)	Initially based on transmissivity values, refined manually during calibration; further refined using PEST	Manual and PEST	1	J	Calibrated specifically to the ELM Phase II water level change model	Use a
Specific yield	Conservation and Survey Division (2005b)	Interpolated from 1,055 test hole logs		J	J		Use a
Specific storage		Spatially uniform value of 0.00001 ft-1		J	J		Yes. T water
Evapotranspiration	CALMIT – 2005 land use map	Cells with 20 acres of open water, streams, wetland, riparian woodlands have ET defined; 5-foot extinction depth; ET surface elevation sent to the 25 th percentile of land surface elevation within each individual cell	Manual	J	J	Relies on 2005 data only; limited to 20 acres or more of open water	No. U compa

Brown AND Caldwell

Use of contents on this sheet is subject to the limitations specified in Section 6 of this document.

p:\nebraska dept of natural resources\141380 - ndnr gw model phase 1\deliverables\reports\ph 1 model review\appx c - matrix\matrix_ndnr model phase one_03.docx\d

Use for NDNR Model?

. Set Layer Top to land surface elevation. Use 10-meter DEMs define surface elevation

. Refine to 0.5 mile x 0.5 mile

fined grid with the use of 10-meter DEMs will aid in more curately simulating streams and groundwater pumping as well clearly showing model flooding

. Model is to be extended to the north to include all of the Lower obrara basin, to comply with regulatory requirements for annual terminations

rtially. Model is to be extended to the north to include all of the wer Niobrara basin, to comply with regulatory requirements for nual determinations

D. Sand Hills region is an important recharge zone for the uifer system. General Head Boundaries should be evaluated ring conceptualization.

s, although the boundaries should be thoroughly evaluated fore they are used. STR cells could be an alternative.

D. General Head Boundaries should be evaluated during nceptualization.

eported lake levels are available for the time period of interest, s could become a prescribed input. This isn't likely to have a ge impact on the system, although the calibration indicates me issues in this region.

as a starting point.

as a starting point.

. This is not a significant parameter in a one-layer model with er table conditions.

Use CROPSIM model output. Could use these data for nparison.

		Table C-1. Matrix Ana			/ 455655111611		
Model Input, Stress, Boundary or Dataset	Dataset: Source and Description	USGS Approach in ELM Phase II	Variable used in Calibration?	Steady State	Transient (DEV)	Limitations	
PRESCRIBED MODEL INPL	JTS AND STRESSES						
Municipal Pumping	Measured and reported municipal pumping 2001-2005 (NDNR, 2007)	Measured and reported pumping, primarily from 2004, was applied as a constant over the 1940 through 2005 period.			J	Assumes current pumping is representative of pumping over the 60 years previous. Note: municipal pumping accounts for only ~3% of total pumping	Poss althe usef pope data
Irrigation Pumping	CALMIT – 2005 land use map (2007) Census of Agriculture county-level crop statistics Surface-water-irrigated acreage maps and annual totals from NDNR, 4 Irrigation Districts, and Bureau of Reclamation	USGS developed annual land use maps to identify irrigated acreage, then categorized the results as surface- or groundwater- irrigated land Net irrigation value derived from: land use maps, an interpolation of the number and location of groundwater- and surface-water-irrigated acres, the amount of water needed by crops, the portion of the crop water requirement that was met by precipitation, measured pumpage values, and the amount of the measured pumpage returning to the aquifer			J		No.
Recharge - Precipitation	Runoff-recharge watershed model (Strauch and Linard, 2009)	Long-term average recharge by surface water drainage basins was based on runoff-recharge model for Elkhorn and Loup drainages, no annual variations in SS; 4- to 9- year periods were held constant in DEV model. Applied to every cell in the model. Resulting values adjusted during manual and automated calibration steps	Manual and PEST	J	J	No annualized data specific to a single year in the DEV model; stress periods were lumped together thus recharge was constant for 4 to 9 years; watershed model limitations: results failed to meet statistical adequacy criteria for 2 out of 3 performance measures.	No.
Recharge – Irrigated cropland Recharge – Non-irrigated cropland	CALMIT – 2005 land use map (2007) Census of Agriculture county-level crop statistics	USGS developed annual land use maps, using the 2005 land use map as a starting point Additional recharge added to cells with irrigated crop land and non-irrigated crop land – rate applied was a constant, acreage changed through time, based on annual crop statistics by county. Eventually defaulted to a constant value of 1.0 inch/year for irrigated cropland and 0.5 inch/year for non-irrigated cropland.		J	J	The spatial distribution of crop land based on a single time period, 2005, adjusted based on C of A statistics, available every 5 years 1950-2002. No data available to refine the 1940- 1949 time period.	No. I
Recharge – Canal seepage	Irrigation districts provided calculations of annual canal and lateral losses, based on water mass balance for part of 1940-2005 period.	Pre-1940: estimated to be 43% of the yearly water diverted from the Platte River, minus any water returned via the Cozad, Dawson, Gothenberg, Elm Creek, or Kearney Canal Systems. Recharge applied uniformly to all cells coinciding with a canal, lateral, or irrigated land. 1940-2005: Recharge applied uniformly to all cells within the respective irrigation district. Recharge rates for cells were adjusted along the Ainsworth, Mirdan and Geranium canals to reflect areas with greater potential for interaction between surface water and groundwater based on geophysical data.		J	J		Yes.
Recharge – Excess Irrigation		Not simulated for over-application of surface water. Implicitly simulated in the net groundwater pumping estimates; total pumping reduced by 20% to account for this parameter.					No.

Brown AND Caldwell

Use of contents on this sheet is subject to the limitations specified in Section 6 of this document. p:\nebraska dept of natural resources\141380 - ndnr gw model phase 1\deliverables\reports\ph 1 model review\appx c - matrix\matrix_ndnr model phase one_03.docx\\d

Use for NDNR Model?

ossibly. These inputs may not be significant in a regional model, though better estimates may improve localized results. May be seful to compare the 2004 reported demands to census opulations, and calculate a per capita demand, then use census ata to roughly estimate municipal demand for prior decades.

o. Use CROPSIM model output.

o. Use CROPSIM model output.

. Use CROPSIM model output.

es. This parameter not part of CROPSIM modeling.

o. Use CROPSIM model output.

Model Input, Stress, Boundary or Dataset	Dataset: Source and Description	USGS Approach in ELM Phase II	Variable used in Calibration?	Steady State	Transient (DEV)	Limitations	
STREAM PACKAGE PARA	METERS						
Locations of Streams and Tributaries	Synoptic baseflow measurements along stream reaches (Peterson and Strauch, 2007)	Simulated in the model if >5 cfs of baseflow measured in 2006 synoptic survey. Bazile and Willow Creeks included because they were of particular interest		J	J		Yes, a need
Elevation of Streambed	Digital Elevation Model with 30-meter resolution (NDNR, 1997)	Elevations were assigned from the DEM, which was queried at regular intervals along each stream reach; values were interpolated linearly between the assigned elevations					No. F
Ks of Streambed		Initially set to Kh of model cell the stream reach was located within; manually adjusted; geophysical data was used to help adjust in areas where the data existed	Manual				Yes. asses estim
Streambed Thickness		Uniform 1 ft thick; lumped in streambed conductance					suppo
Stream Width	Synoptic baseflow measurements along stream reaches (Peterson and Strauch, 2007)	Measurements of stream width were made at 250 locations					thickr condu
CALIBRATION DATASETS	-				<u> </u>		
Baseflow Targets	Synoptic baseflow measurements along stream reaches (Peterson and Strauch, 2007) Annual baseflow estimated from	38 annual target stations (1,435 targets) from baseflow separation analyses; 165 targets for 2005 based on the 2006 synoptic survey; 20 locations were estimated based on streamflow records for pre-1940 data.		J	J		Yes.
	streamflow data NDNR, 2008; USGS, 2008						
SS Water Level Targets	USGS National Water Information System	506 water level targets over the spring months from 1928 to 2002		J			Yes.
Trasient Water Level Change Targets	USGS National Water Information System	USGS calculated water level change over a decade: 1945-55, 1955-65, 1975-85, 1985-95 and 1995- 2005. Decadal changes.			J		No. L

PEST Parameter Estimation Software (Doherty, 2008a and 2008b)

SS Steady State Model

DEV Development Model

Use of contents on this sheet is subject to the limitations specified in Section 6 of this document. p:\nebraska dept of natural resources\141380 - ndnr gw model phase 1\deliverables\reports\ph 1 model review\appx c - matrix\matrix_ndnr model phase one_03.docx\\d

Use for NDNR Model?

s, as a starting point. In some areas, reaches or tributaries will ed to be added.

. Revise streambed elevation based on 10-meter DEMs

These inputs were based on field work, a GIS-based sessment, and estimates of Ks derived from transmissivity imates (UNL, 2005a). These data are therefore strongly oported by field data collection and analysis. Note: width, ckness and Ks are variables used to calculate the streambed nductance, which is the parameter used by MODFLOW.

. Use direct water level measurements.

Appendix B: CENEB Stress Periods

Stress	Time Repr (End o		Days in	Elapsed Time
Period	Month	Year	Stress Period	(days)
1	montin	Pre-1940	1	(uu)3) 1
2	Dec	1940	365	366
3	Dec	1941	365	731
4	Dec	1942	365	1096
5	Dec	1943	365	1461
6	Dec	1944	365	1826
7	Dec	1945	365	2191
8	Dec	1946	365	2556
9	Dec	1947	365	2921
10	Dec	1948	365	3286
11	Dec	1949	365	3651
12 13	Dec Dec	1950 1951	365 365	4016 4381
13	Dec	1951	365	4381 4746
15	Dec	1952	365	5111
16	Dec	1955	365	5476
17	Dec	1955	365	5841
18	Dec	1956	365	6206
19	Dec	1957	365	6571
20	Dec	1958	365	6936
21	Dec	1959	365	7301
22	Dec	1960	365	7666
23	Dec	1961	365	8031
24	Dec	1962	365	8396
25	Dec	1963	365	8761
26 27	Dec	1964 1965	365 365	9126 9491
27	Dec Dec	1965	365	9856
28	Dec	1900	365	10221
30		1968	365	10586
31	Dec	1969	365	10951
32	Dec	1970	365	11316
33	Dec	1971	365	11681
34	Dec	1972	365	12046
35	Dec	1973	365	12411
36		1974	365	12776
37		1975	365	13141
38	Dec	1976	365	13506
39	Dec	1977	365	13871
40 41	Dec	1978 1979	365 365	14236
41	Dec Dec	1979 1980	365	14601 14966
42	Dec	1980	365	15331
43	Dec	1981	365	15696
• •	200	1002	000	10000

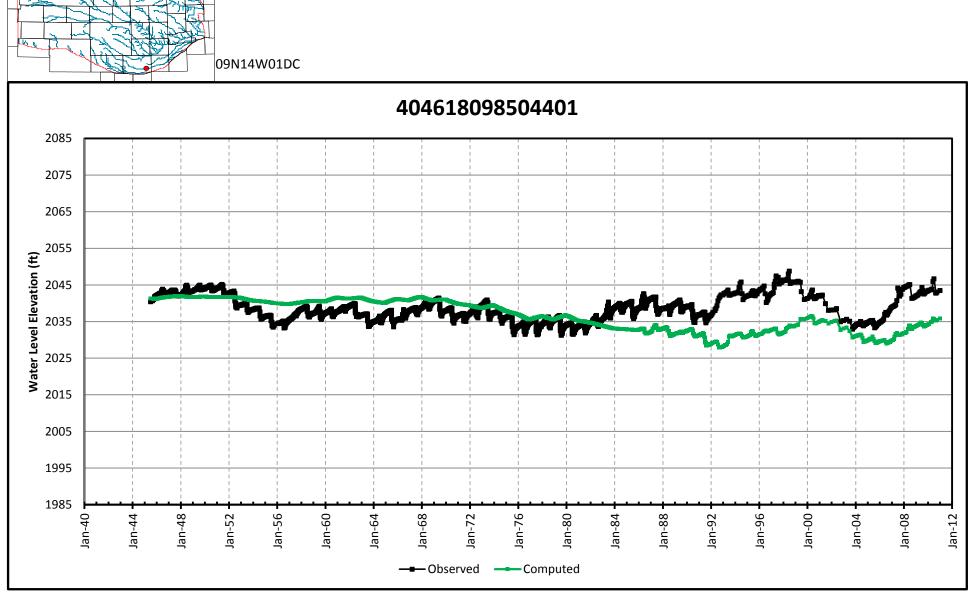
Appendix B - Stress Periods

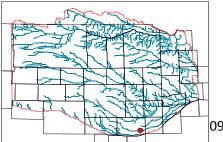
45		4000	265	10004
45	Dec	1983	365	16061
46 47	Dec Dec	1984 1985	365 365	16426 16791
47	January	1985	30.417	16791
48	February	1986	30.417	16852
49 50	March	1986	30.417	16882
50	April	1986	30.417	16913
52	May	1986	30.417	16943
53	June	1986	30.417	16974
54	July	1986	30.417	17004
55	Aug	1986	30.417	17034
56	Sept	1986	30.417	17065
57	Oct	1986	30.417	17095
58	Nov	1986	30.417	17126
59	Dec	1986	30.417	17156
60	January	1987	30.417	17186
61	February	1987	30.417	17217
62	, March	1987	30.417	17247
63	April	1987	30.417	17278
64	May	1987	30.417	17308
65	June	1987	30.417	17339
66	July	1987	30.417	17369
67	Aug	1987	30.417	17399
68	Sept	1987	30.417	17430
69	Oct	1987	30.417	17460
70	Nov	1987	30.417	17491
71	Dec	1987	30.417	17521
72	January	1988	30.417	17551
73	February	1988	30.417	17582
74	March	1988	30.417	17612
75	April	1988	30.417	17643
76	May	1988	30.417	17673
77	June	1988	30.417	17704
78	July	1988	30.417	17734
79	Aug	1988	30.417	17764
80	Sept	1988	30.417	17795
81	Oct	1988	30.417	17825
82	Nov	1988	30.417	17856
83	Dec	1988	30.417	17886
84	January	1989	30.417	17916
85	February	1989	30.417	17947
86	March	1989	30.417	17977
87	April	1989	30.417	18008
88	May	1989	30.417	18038
89	June	1989	30.417	18069
90	July	1989	30.417	18099
91	Aug	1989	30.417	18129

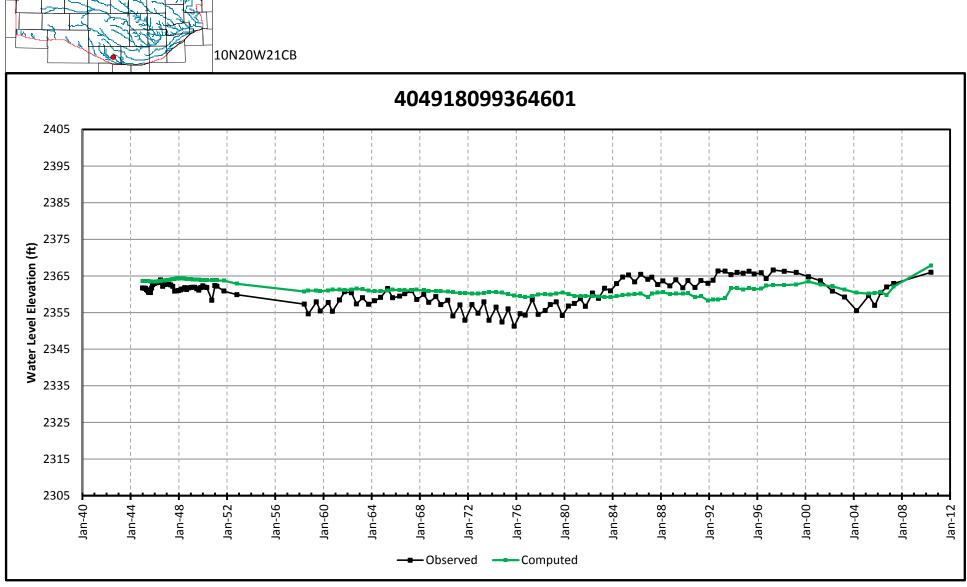
92	Sept	1989	30.417	18160
93	Oct	1989	30.417	18190
94	Nov	1989	30.417	18221
95	Dec	1989	30.417	18251
96	January	1990	30.417	18281
97	February	1990	30.417	18312
98	March	1990	30.417	18342
99	April	1990	30.417	18373
100	May	1990	30.417	18403
101	June	1990	30.417	18434
102	July	1990	30.417	18464
103	Aug	1990	30.417	18494
104	Sept	1990	30.417	18525
105	Oct	1990	30.417	18555
105	Nov	1990	30.417	18586
100	Dec	1990	30.417	18580
107	January	1990	30.417	18646
108	February	1991	30.417	18677
109	March	1991	30.417	18077
110		1991		
	April		30.417	18738
112	May	1991	30.417	18768
113	June	1991	30.417	18799
114	July	1991	30.417	18829
115	Aug	1991	30.417	18859
116	Sept	1991	30.417	18890
117	Oct	1991	30.417	18920
118	Nov	1991	30.417	18951
119	Dec	1991	30.417	18981
120	January	1992	30.417	19011
121	February	1992	30.417	19042
122	March	1992	30.417	19072
123	April	1992	30.417	19103
124	May	1992	30.417	19133
125	June	1992	30.417	19164
126	July	1992	30.417	19194
127	Aug	1992	30.417	19224
128	Sept	1992	30.417	19255
129	Oct	1992	30.417	19285
130	Nov	1992	30.417	19316
131	Dec	1992	30.417	19346
132	January	1993	30.417	19376
133	, February	1993	30.417	19407
134	March	1993	30.417	19437
135	April	1993	30.417	19468
136	May	1993	30.417	19498
137	June	1993	30.417	19529
138	July	1993	30.417	19559
100	July	1995	50.117	19999

139	Aug	1993	30.417	19589
140	Sept	1993	30.417	19620
141	Oct	1993	30.417	19650
142	Nov	1993	30.417	19681
143	Dec	1993	30.417	19711
144	January	1994	30.417	19741
145	February	1994	30.417	19772
146	March	1994	30.417	19802
147	April	1994	30.417	19833
148	May	1994	30.417	19863
149	June	1994	30.417	19894
150	July	1994	30.417	19924
151	Aug	1994	30.417	19954
152	Sept	1994	30.417	19985
153	Oct	1994	30.417	20015
154	Nov	1994	30.417	20046
155	Dec	1994	30.417	20076
156	January	1995	30.417	20106
157	February	1995	30.417	20137
158	March	1995	30.417	20167
159	April	1995	30.417	20198
160	May	1995	30.417	20228
161	June	1995	30.417	20259
162	July	1995	30.417	20289
163	Aug	1995	30.417	20319
164	Sept	1995	30.417	20350
165	Oct	1995	30.417	20380
166	Nov	1995	30.417	20411
167	Dec	1995	30.417	20441
168	January	1996	30.417	20471
169	February	1996	30.417	20502
170	March	1996	30.417	20532
171	April	1996	30.417	20563
172	May	1996	30.417	20593
173	June	1996	30.417	20624
174	July	1996	30.417	20654
175	Aug	1996	30.417	20684
176	Sept	1996	30.417	20715
177	Oct	1996	30.417	20745
178	Nov	1996	30.417	20776
179	Dec	1996	30.417	20806
180	January	1997	30.417	20836
181	February	1997	30.417	20867
182	March	1997	30.417	20897
183	April	1997	30.417	20928
184 195	May	1997	30.417	20958
185	June	1997	30.417	20989

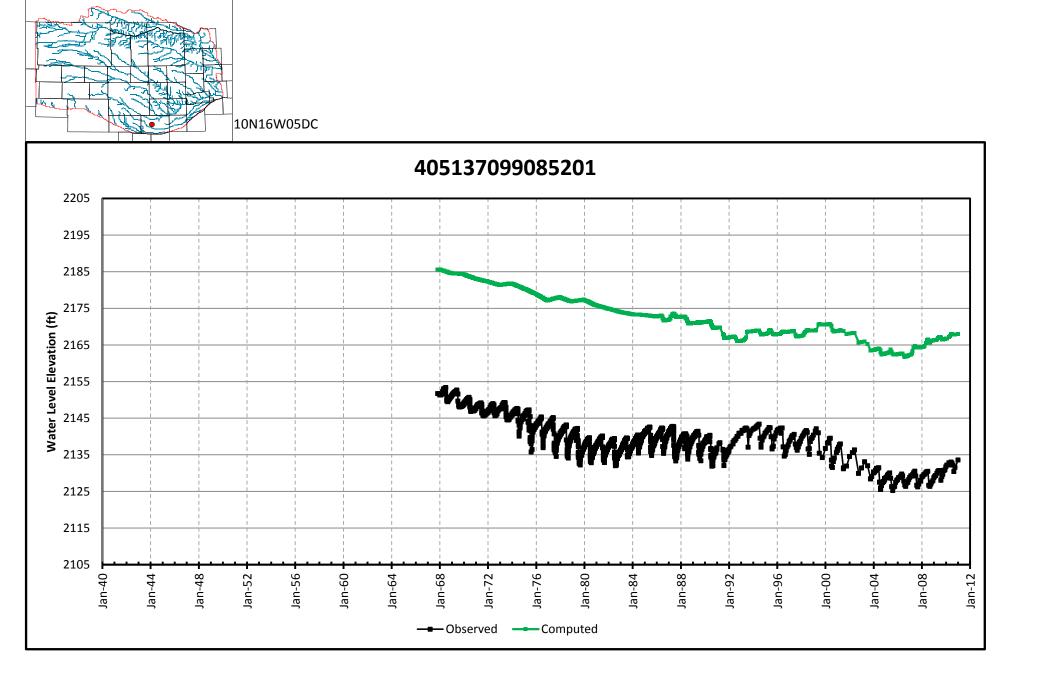
186	July	1997	30.417	21019
187	Aug	1997	30.417	21049
188	Sept	1997	30.417	21080
189	Oct	1997	30.417	21110
190	Nov	1997	30.417	21141
191	Dec	1997	30.417	21171
192	January	1998	30.417	21201
193	February	1998	30.417	21232
194	March	1998	30.417	21262
195	April	1998	30.417	21293
196	May	1998	30.417	21323
197	June	1998	30.417	21354
198	July	1998	30.417	21384
199	Aug	1998	30.417	21414
200	Sept	1998	30.417	21445
201	Oct	1998	30.417	21475
202	Nov	1998	30.417	21506
203	Dec	1998	30.417	21536
204	January	1999	30.417	21566
205	February	1999	30.417	21597
206	March	1999	30.417	21627
207	April	1999	30.417	21658
208	May	1999	30.417	21688
209	June	1999	30.417	21719
210	July	1999	30.417	21749
211	Aug	1999	30.417	21779
212	Sept	1999	30.417	21810
213	Oct	1999	30.417	21840
214	Nov	1999	30.417	21871
215	Dec	1999	30.417	21901
216	January	2000	30.417	21931
217	February	2000	30.417	21962
218	March	2000	30.417	21992
219	April	2000	30.417	22023
220	May	2000	30.417	22053
221	June	2000	30.417	22084
222	July	2000	30.417	22114
223	Aug	2000	30.417	22144
224	Sept	2000	30.417	22175
225	Oct	2000	30.417	22205
226	Nov	2000	30.417	22236
227	Dec	2000	30.417	22266
228	January	2001	30.417	22296
229	February	2001	30.417	22327
230	March	2001	30.417	22357
231	April	2001	30.417	22388
232	May	2001	30.417	22418

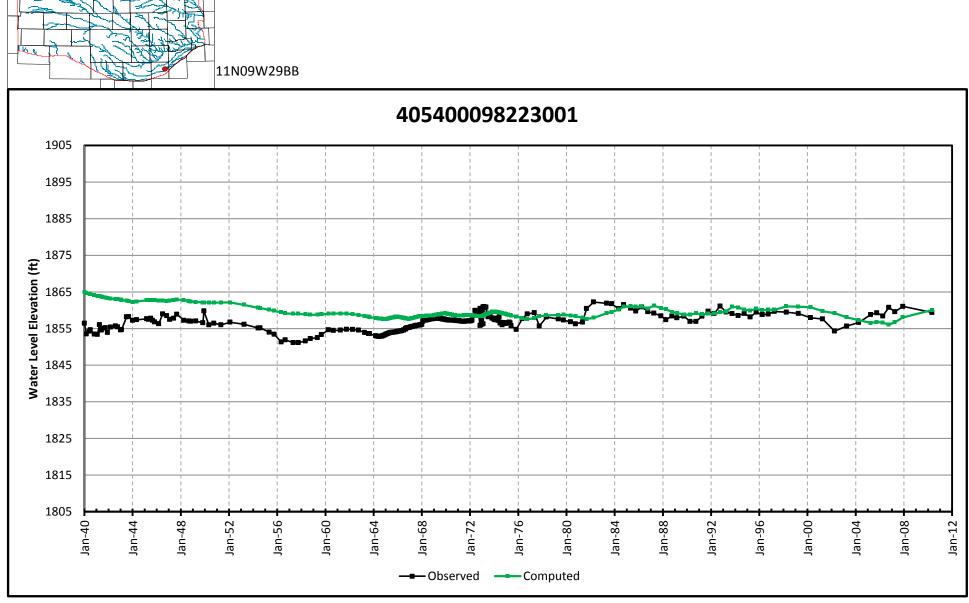

233	June	2001	30.417	22449
234	July	2001	30.417	22479
235	Aug	2001	30.417	22509
236	Sept	2001	30.417	22540
237	Oct	2001	30.417	22570
238	Nov	2001	30.417	22601
239	Dec	2001	30.417	22631
240	January	2002	30.417	22661
241	February	2002	30.417	22692
242	March	2002	30.417	22722
243	April	2002	30.417	22753
244	May	2002	30.417	22783
245	June	2002	30.417	22814
246	July	2002	30.417	22844
247	Aug	2002	30.417	22874
248	Sept	2002	30.417	22905
249	Oct	2002	30.417	22935
250	Nov	2002	30.417	22966
251	Dec	2002	30.417	22996
252	January	2003	30.417	23026
253	February	2003	30.417	23057
254	March	2003	30.417	23087
255	April	2003	30.417	23118
256	May	2003	30.417	23148
257	June	2003	30.417	23179
258	July	2003	30.417	23209
259	Aug	2003	30.417	23239
260	Sept	2003	30.417	23270
261	Oct	2003	30.417	23300
262	Nov	2003	30.417	23331
263	Dec	2003	30.417	23361
264	January	2004	30.417	23391
265	February	2004	30.417	23422
266	March	2004	30.417	23452
267	April	2004	30.417	23483
268	May	2004	30.417	23513
269	June	2004	30.417	23544
270	July	2004	30.417	23574
271	Aug	2004	30.417	23604
272	Sept	2004	30.417	23635
273	Oct	2004	30.417	23665
274	Nov	2004	30.417	23696
275	. Dec	2004	30.417	23726
276	January	2005	30.417	23756
277	February	2005	30.417	23787
278	March	2005	30.417	23817
279	April	2005	30.417	23848

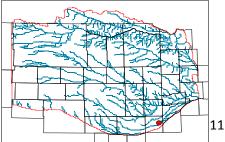

280	May	2005	30.417	23878
281	June	2005	30.417	23909
282	July	2005	30.417	23939
283	Aug	2005	30.417	23969
284	Sept	2005	30.417	24000
285	Oct	2005	30.417	24030
286	Nov	2005	30.417	24061
287	Dec	2005	30.417	24091
288	January	2006	30.417	24121
289	February	2006	30.417	24152
290	March	2006	30.417	24182
291	April	2006	30.417	24102
292	Дрії Мау	2000	30.417	24213
293	June	2006	30.417	24273
293	July	2000	30.417	24274
294	-	2006	30.417	24304 24334
295	Aug	2006	30.417	24354 24365
290	Sept Oct	2006	30.417	24305
			30.417	
298	Nov	2006	30.417	24426 24456
299	Dec	2006		
300	January	2007	30.417	24487
301	February	2007	30.417	24517
302	March	2007	30.417	24547
303	April	2007	30.417	24578
304	May	2007	30.417	24608
305	June	2007	30.417	24639
306	July	2007	30.417	24669
307	Aug	2007	30.417	24699
308	Sept	2007	30.417	24730
309	Oct	2007	30.417	24760
310	Nov	2007	30.417	24791
311	Dec	2007	30.417	24821
312	January	2008	30.417	24852
313	February	2008	30.417	24882
314	March	2008	30.417	24912
315	April	2008	30.417	24943
316	May	2008	30.417	24973
317	June	2008	30.417	25004
318	July	2008	30.417	25034
319	Aug	2008	30.417	25064
320	Sept	2008	30.417	25095
321	Oct	2008	30.417	25125
322	Nov	2008	30.417	25156
323	Dec	2008	30.417	25186
324	January	2009	30.417	25217
325	February	2009	30.417	25247
326	March	2009	30.417	25277

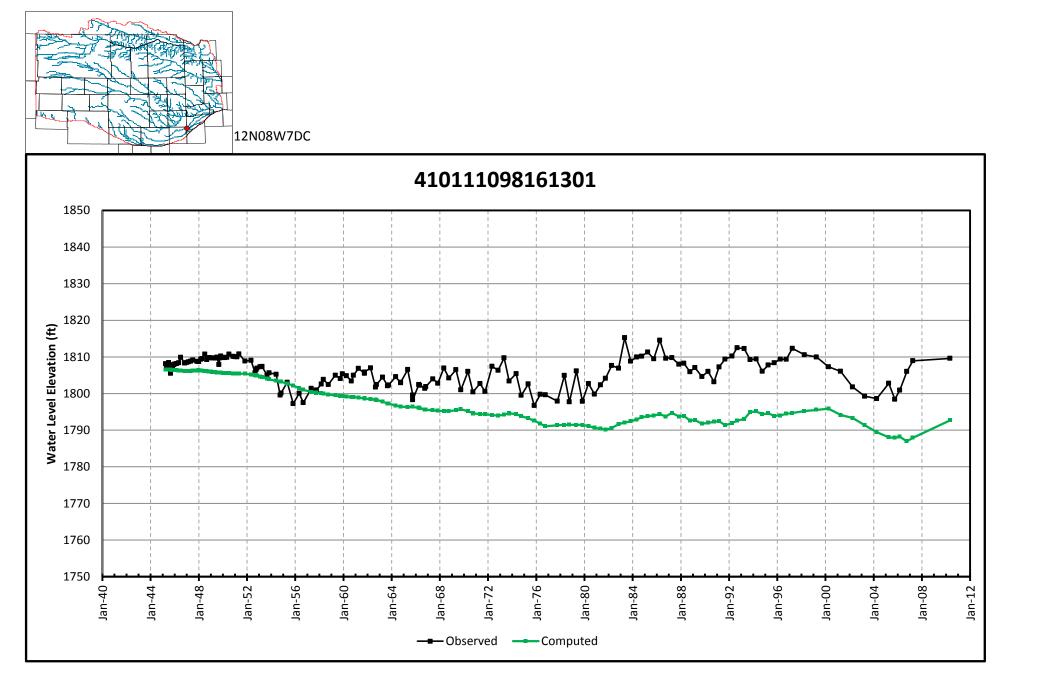

327	April	2009	30.417	25308
328	May	2009	30.417	25338
329	June	2009	30.417	25369
330	July	2009	30.417	25399
331	Aug	2009	30.417	25429
332	Sept	2009	30.417	25460
333	Oct	2009	30.417	25490
334	Nov	2009	30.417	25521
335	Dec	2009	30.417	25551
336	January	2010	30.417	25582
337	February	2010	30.417	25612
338	March	2010	30.417	25642
339	April	2010	30.417	25673
340	May	2010	30.417	25703
341	June	2010	30.417	25734
342	July	2010	30.417	25764
343	Aug	2010	30.417	25794
344	Sept	2010	30.417	25825
345	Oct	2010	30.417	25855
346	Nov	2010	30.417	25886
347	Dec	2010	30.417	25916
348	January	2011	30.417	25947
349	February	2011	30.417	25977
350	March	2011	30.417	26007
351	April	2011	30.417	26038
352	May	2011	30.417	26068
353	June	2011	30.417	26099
354	July	2011	30.417	26129
355	Aug	2011	30.417	26159
356	Sept	2011	30.417	26190
357	Oct	2011	30.417	26220
358	Nov	2011	30.417	26251
359	Dec	2011	30.417	26281

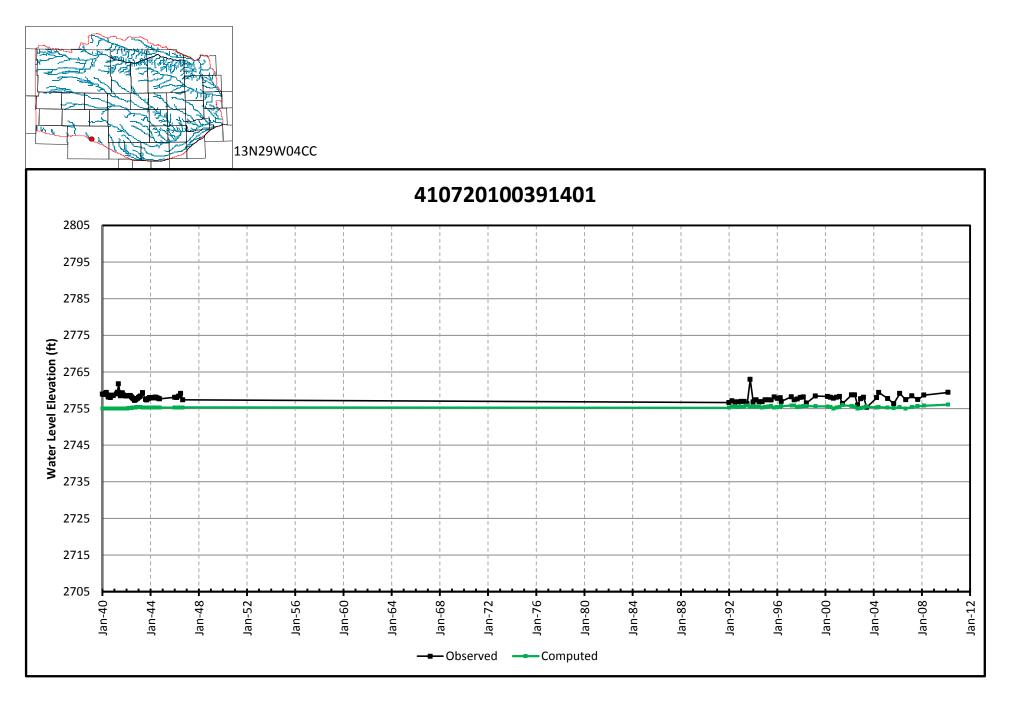
Appendix C: Water Level Hydrographs

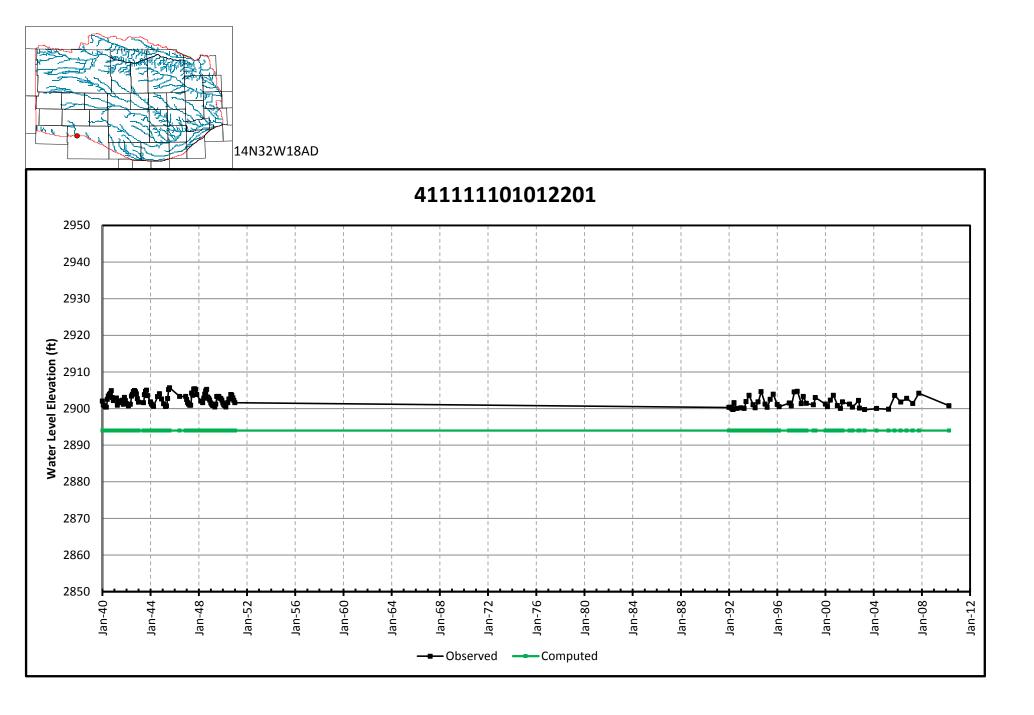


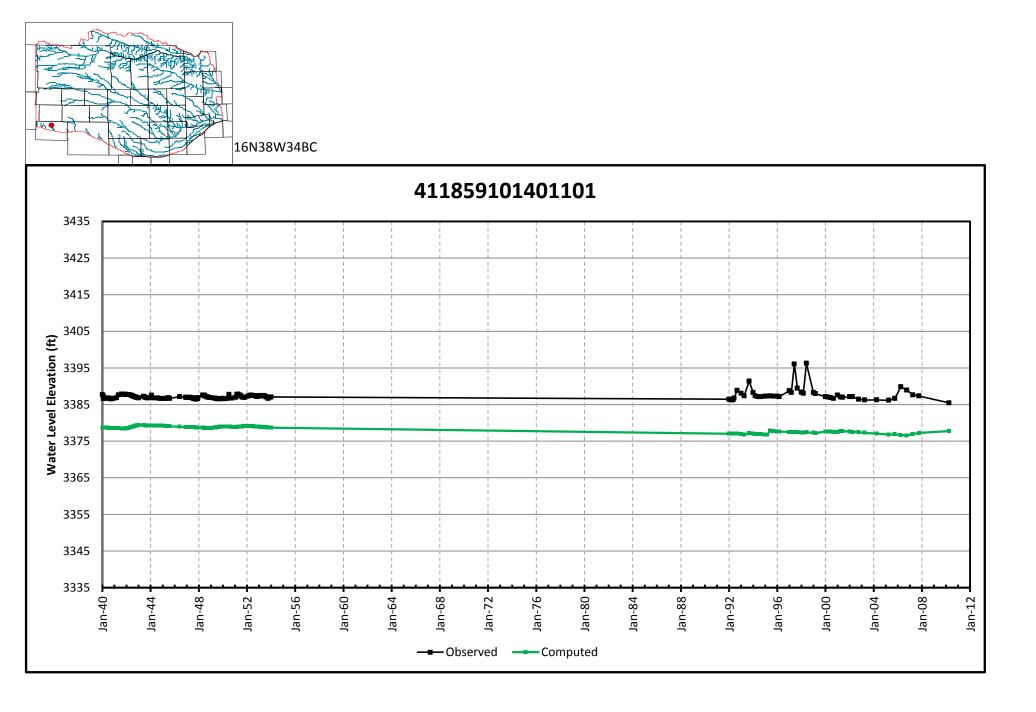


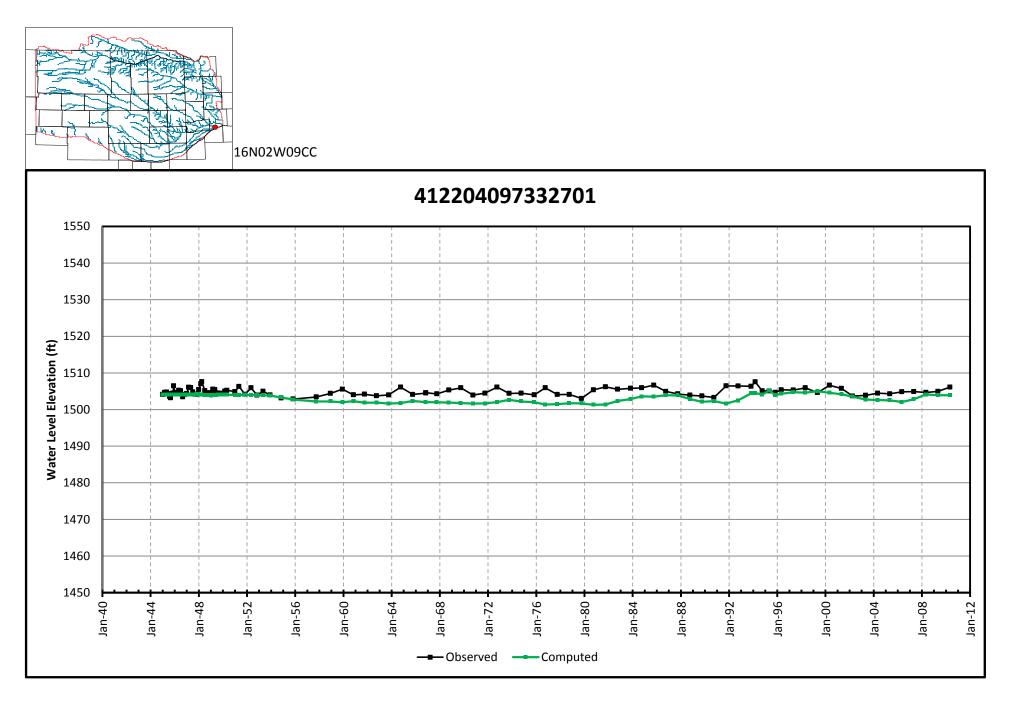


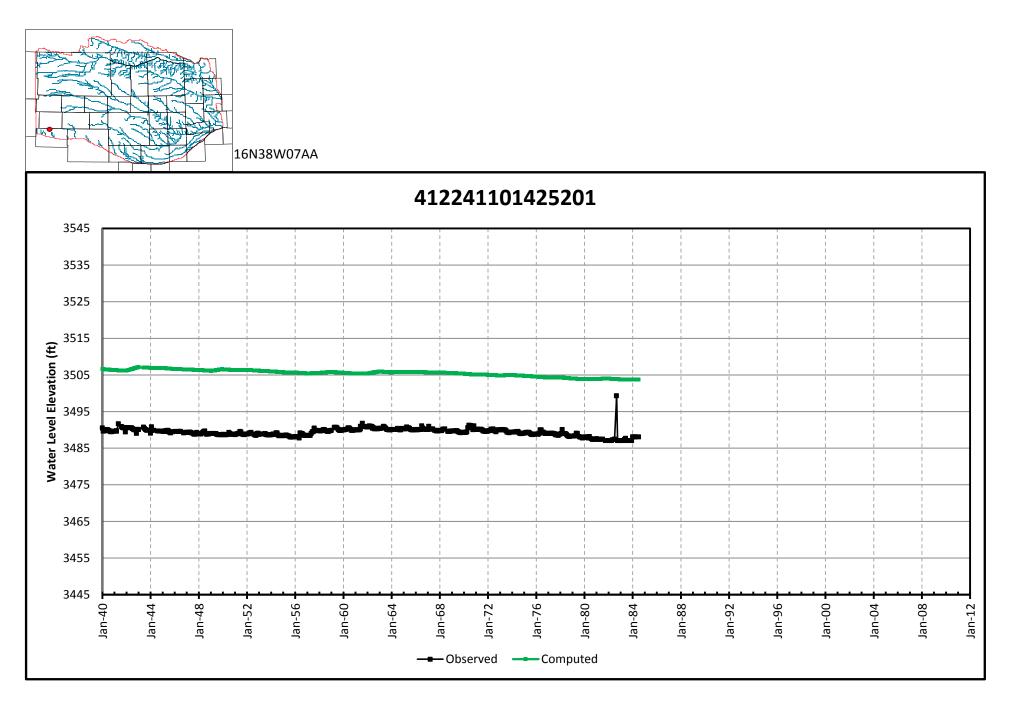


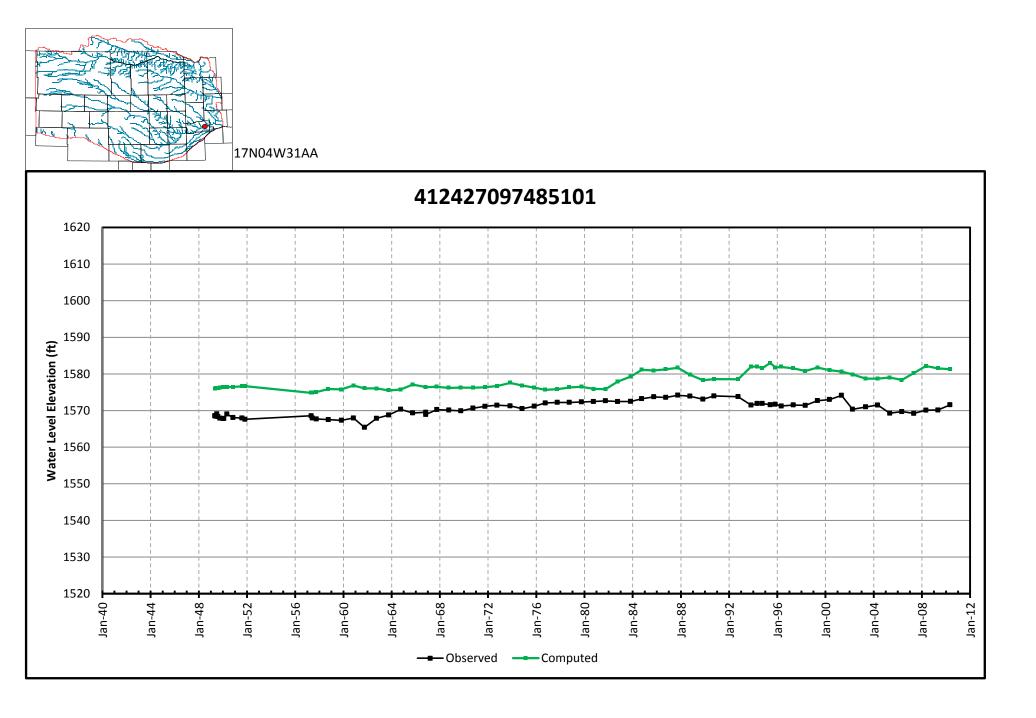


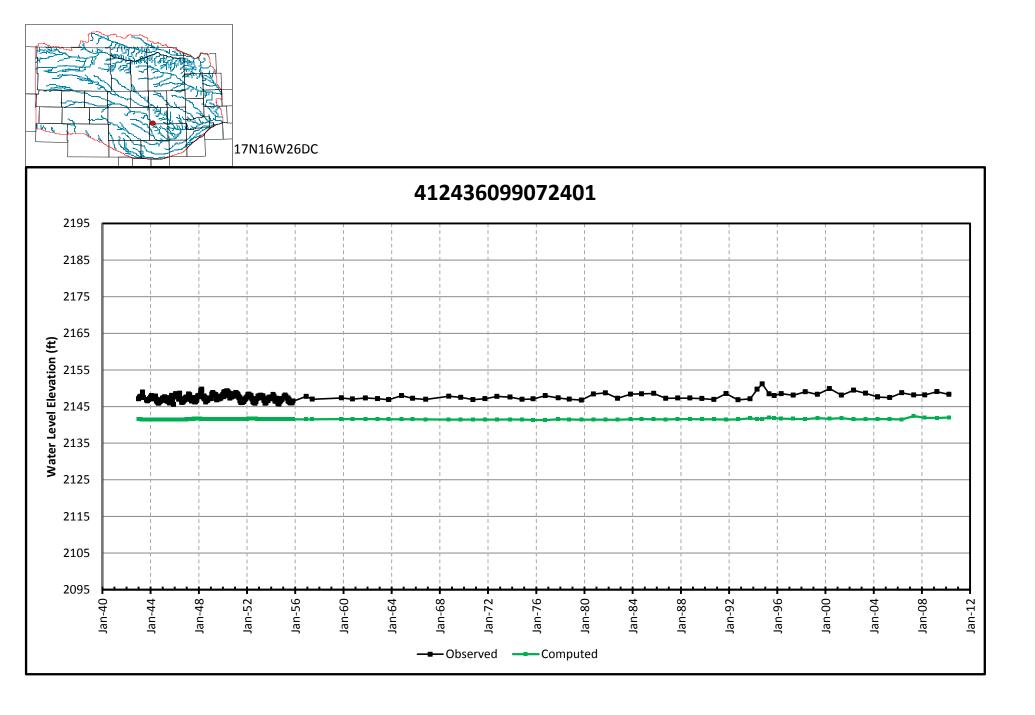


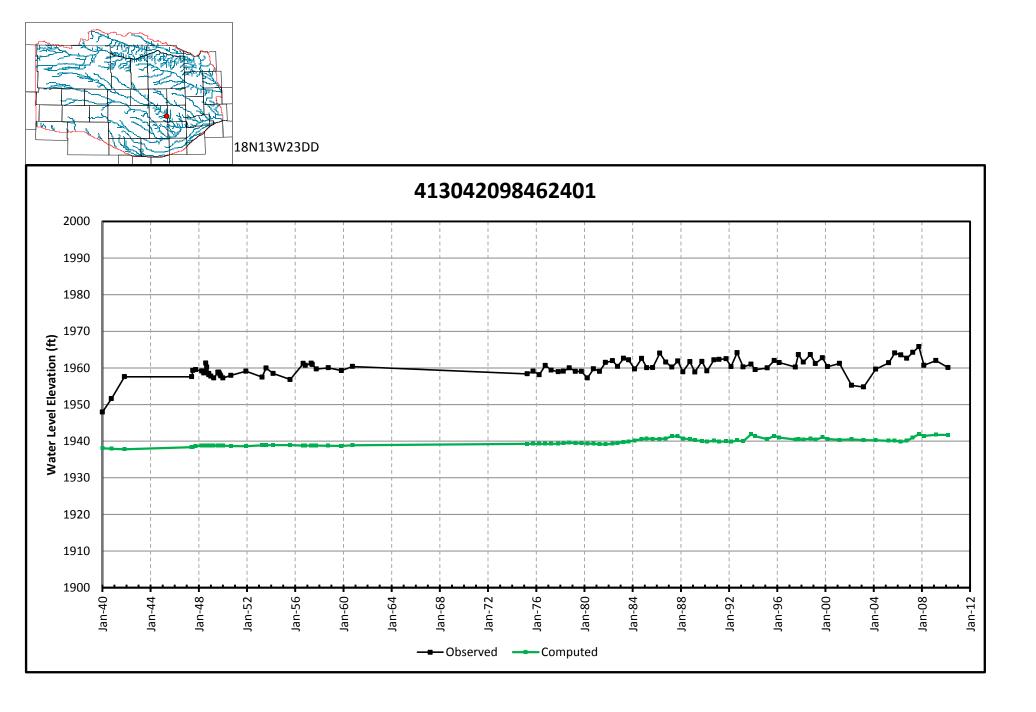


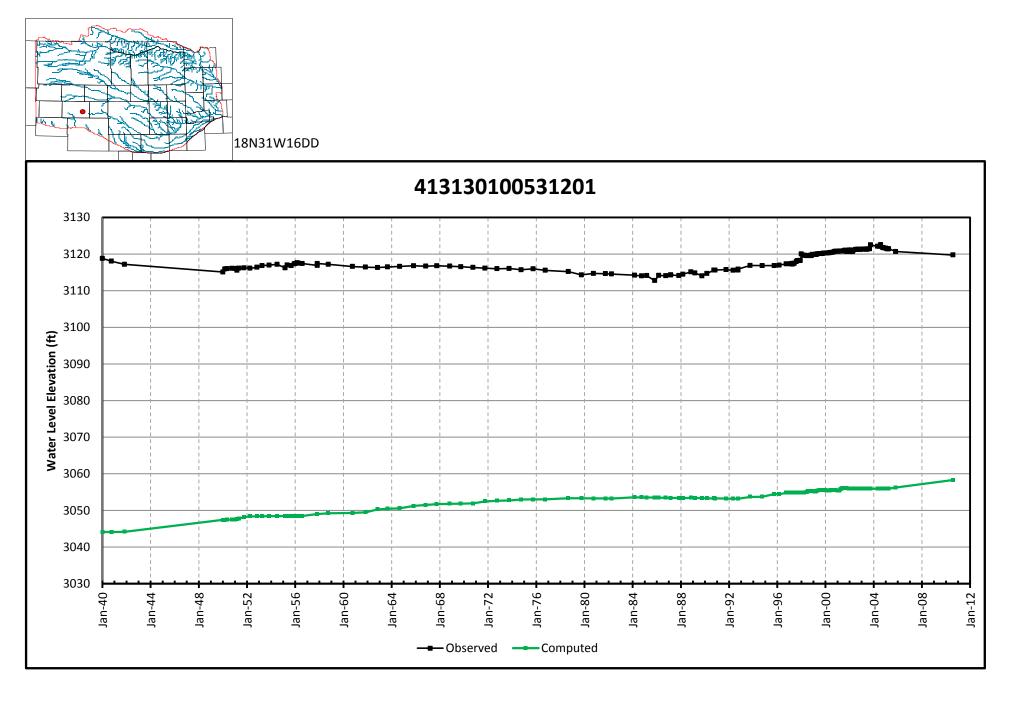


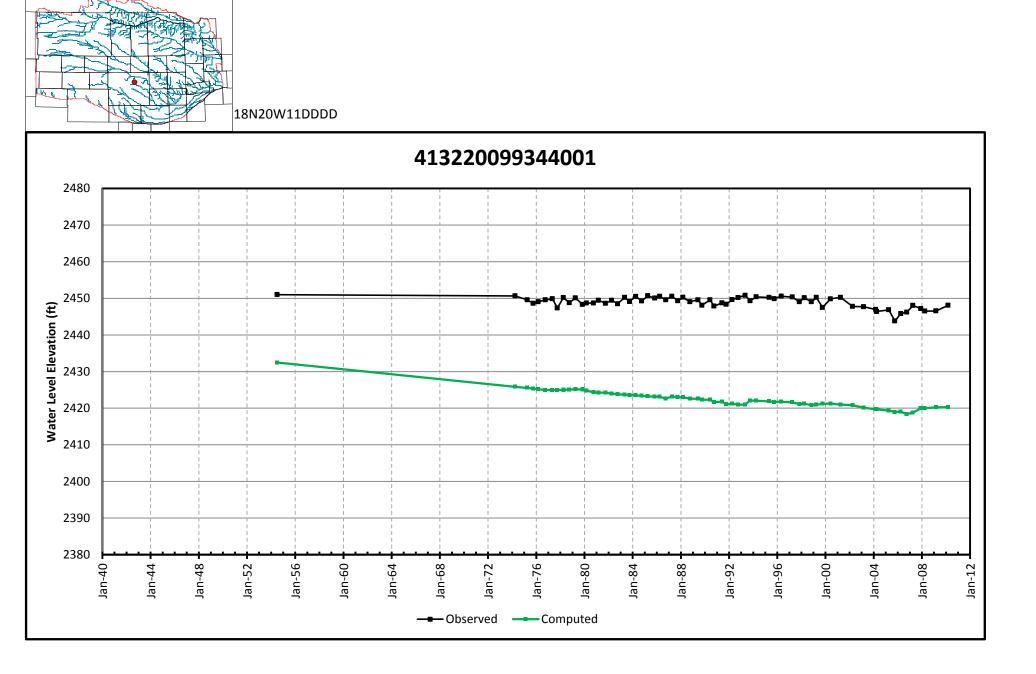


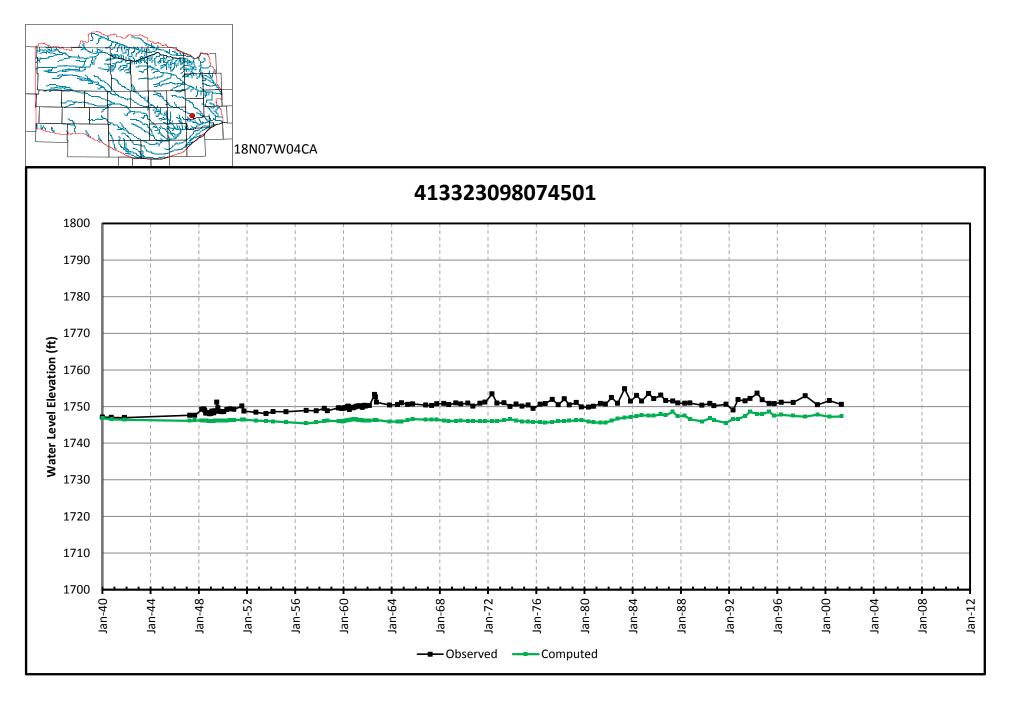


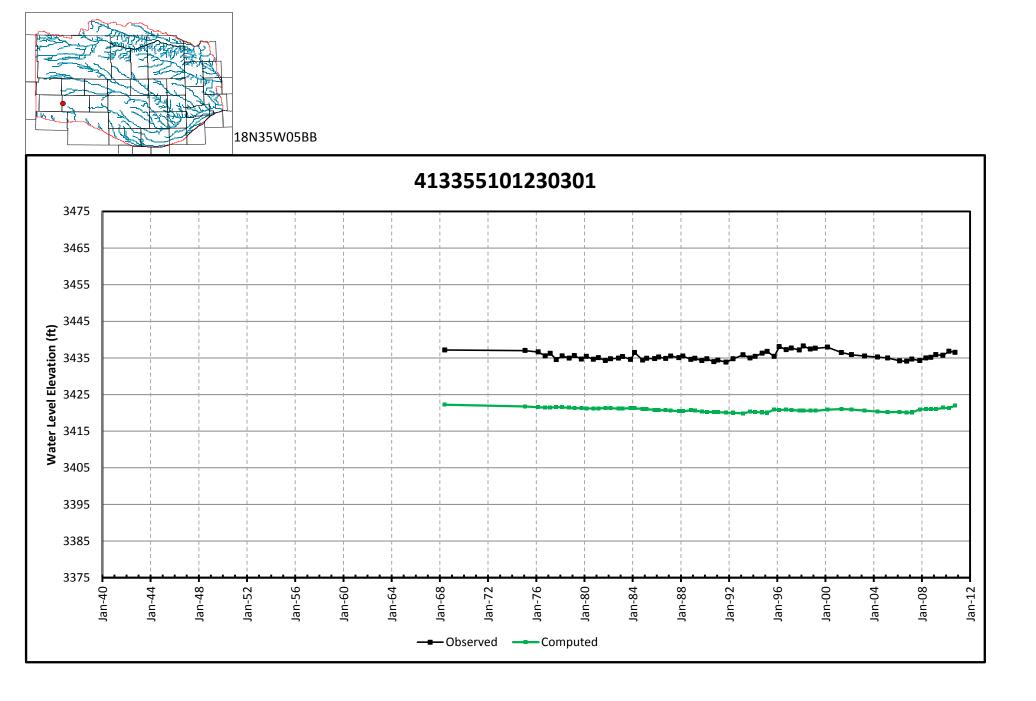


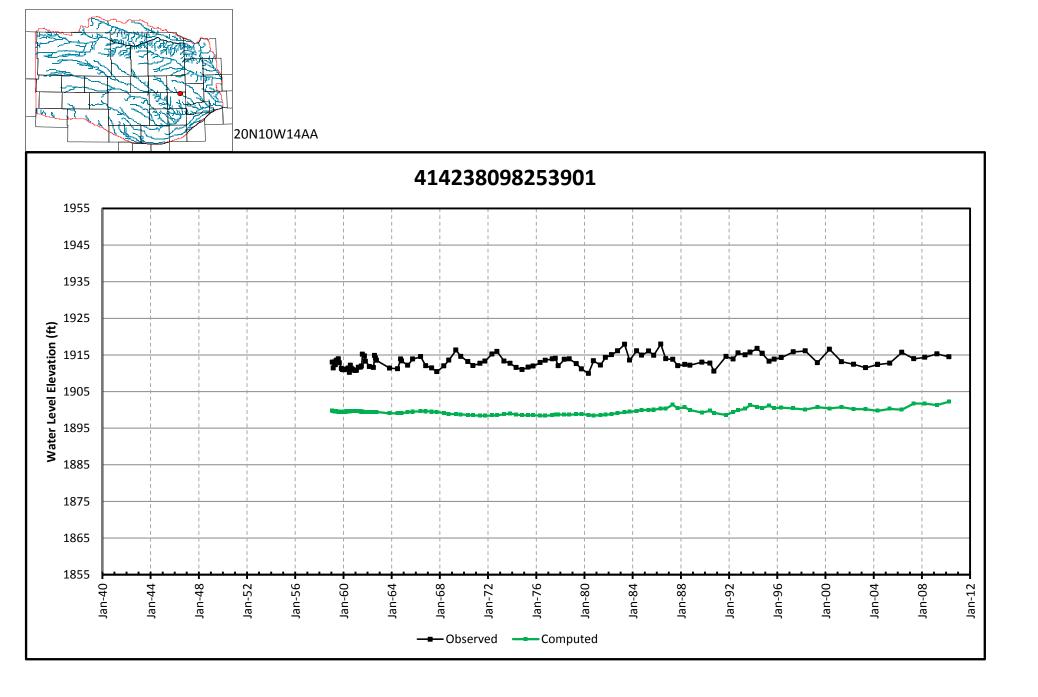


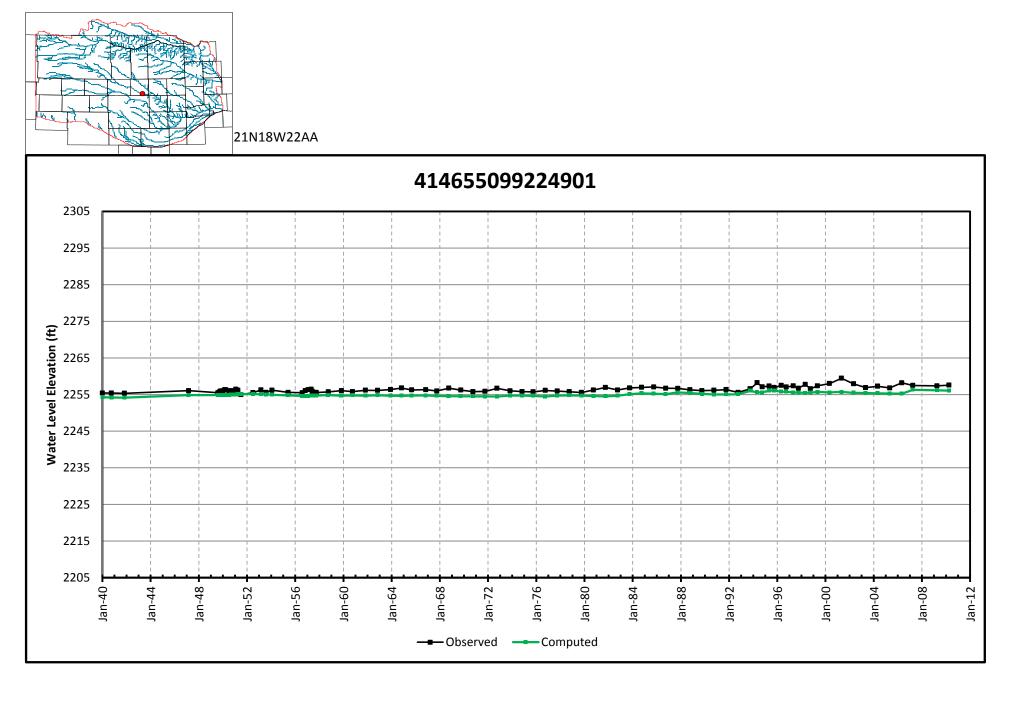


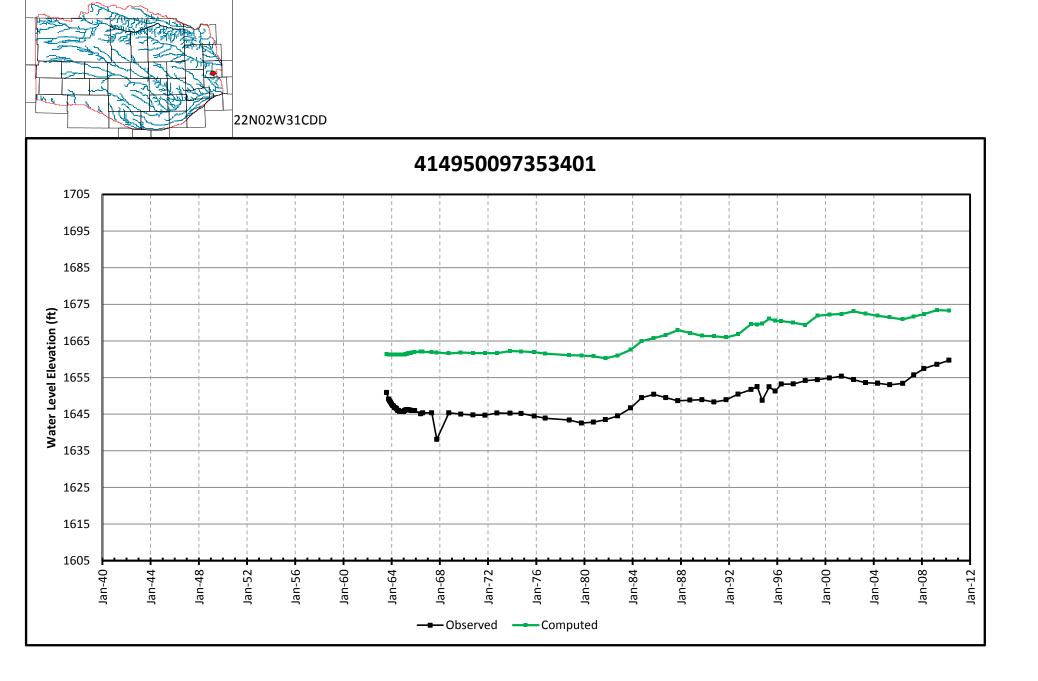


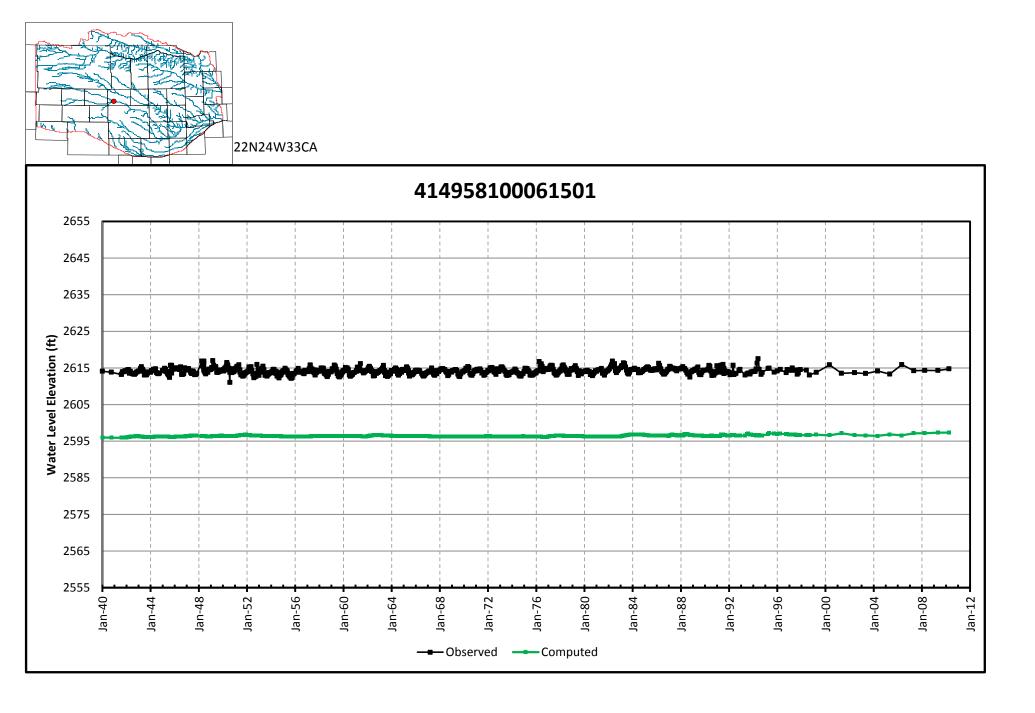


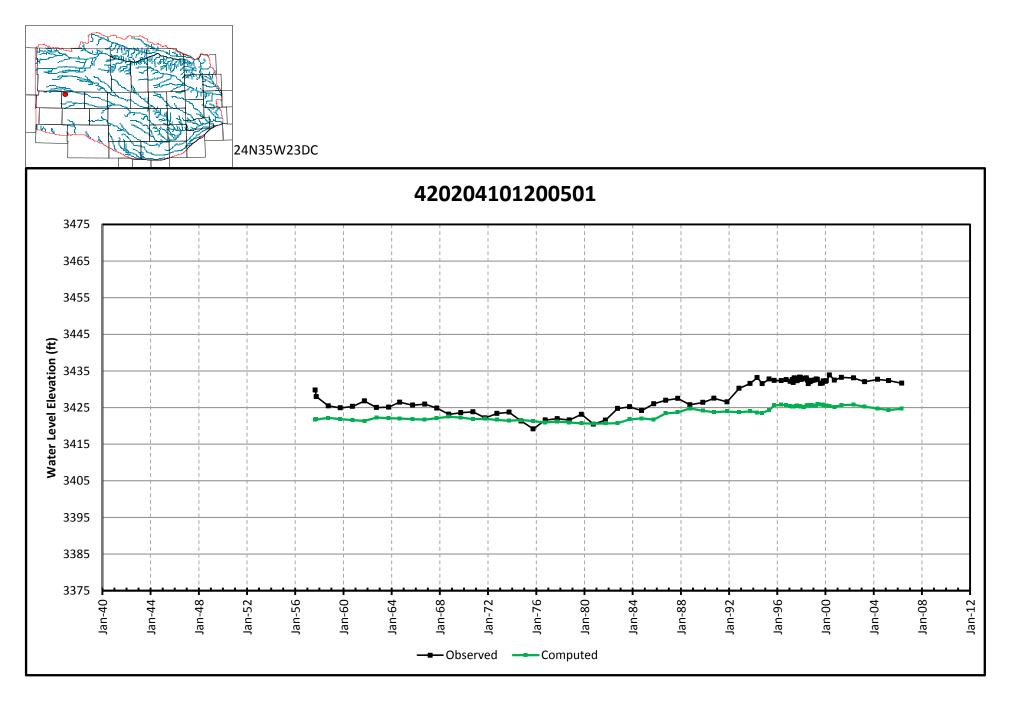


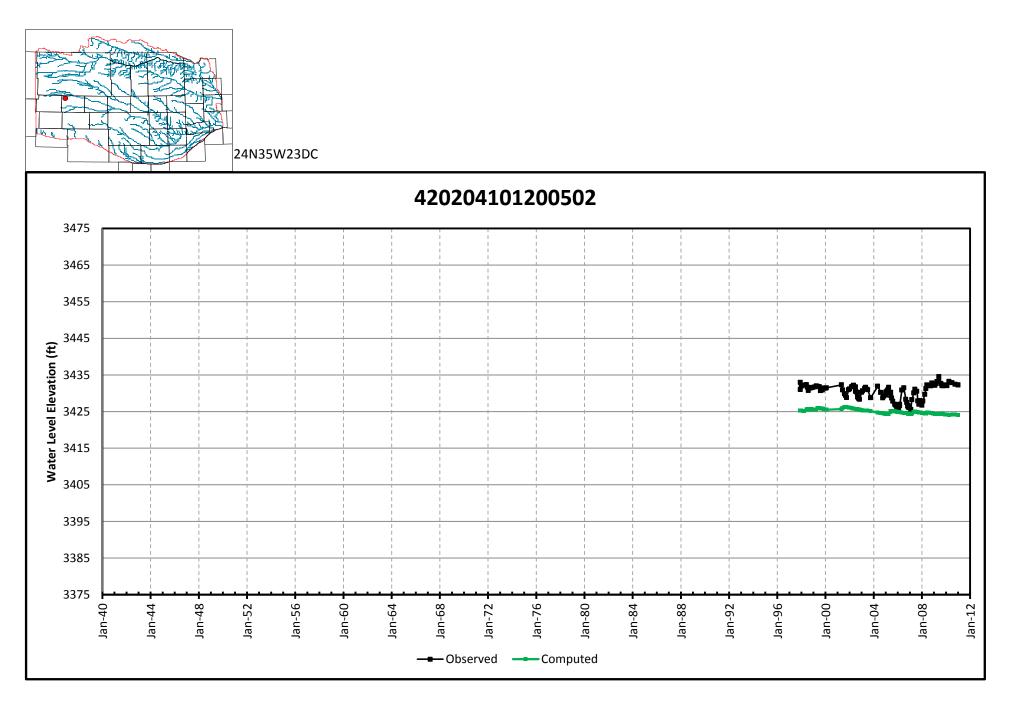


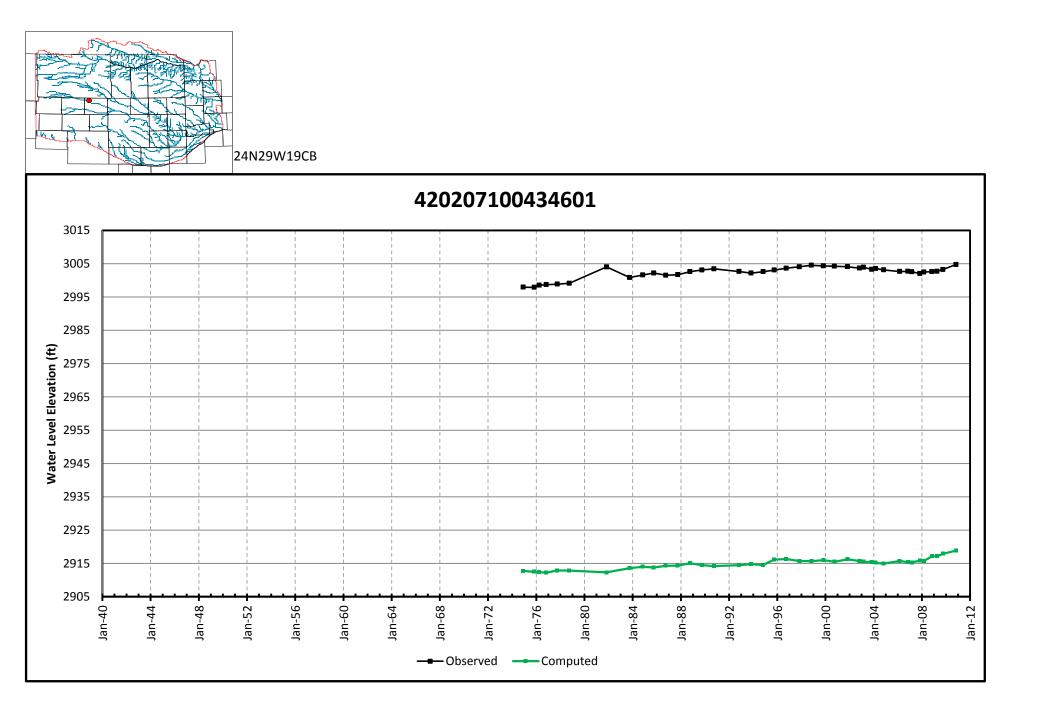


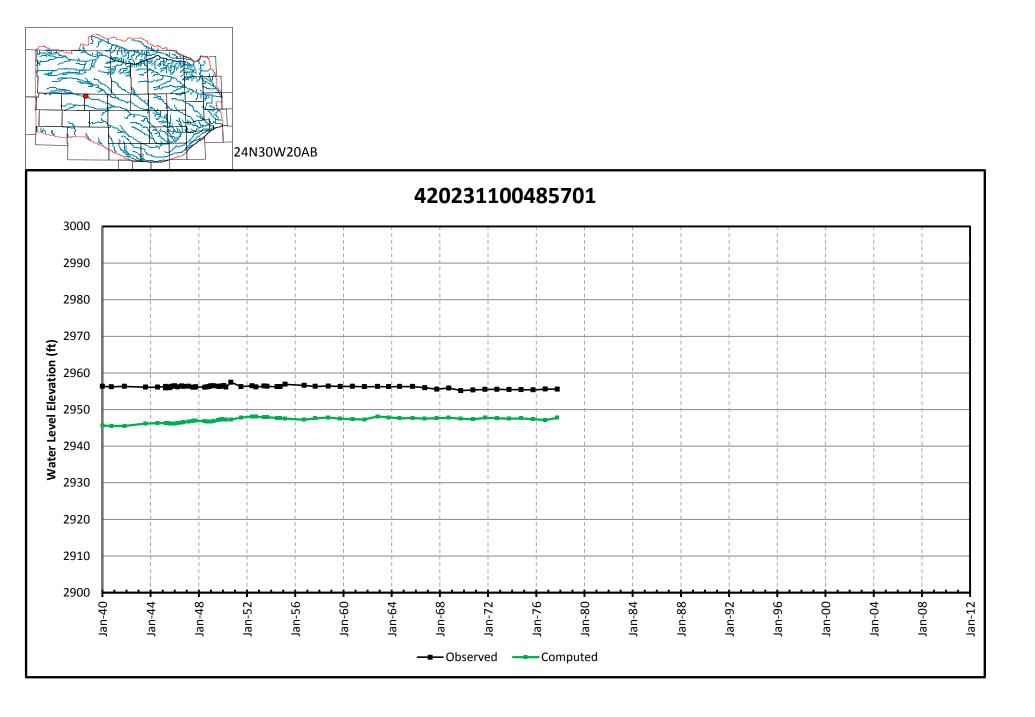


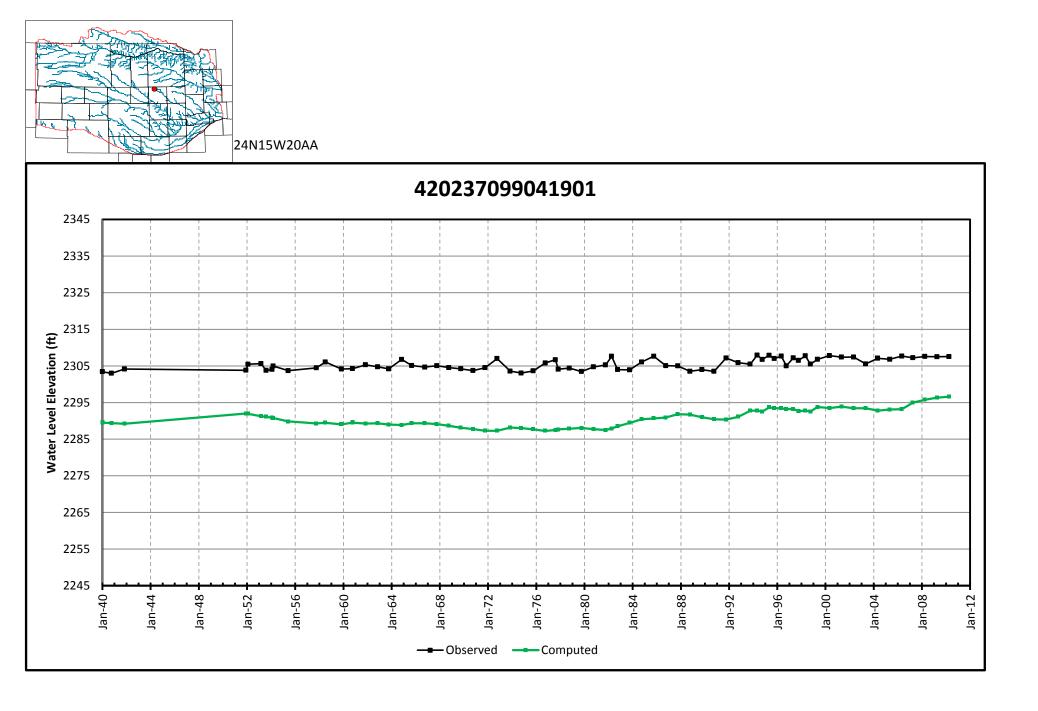


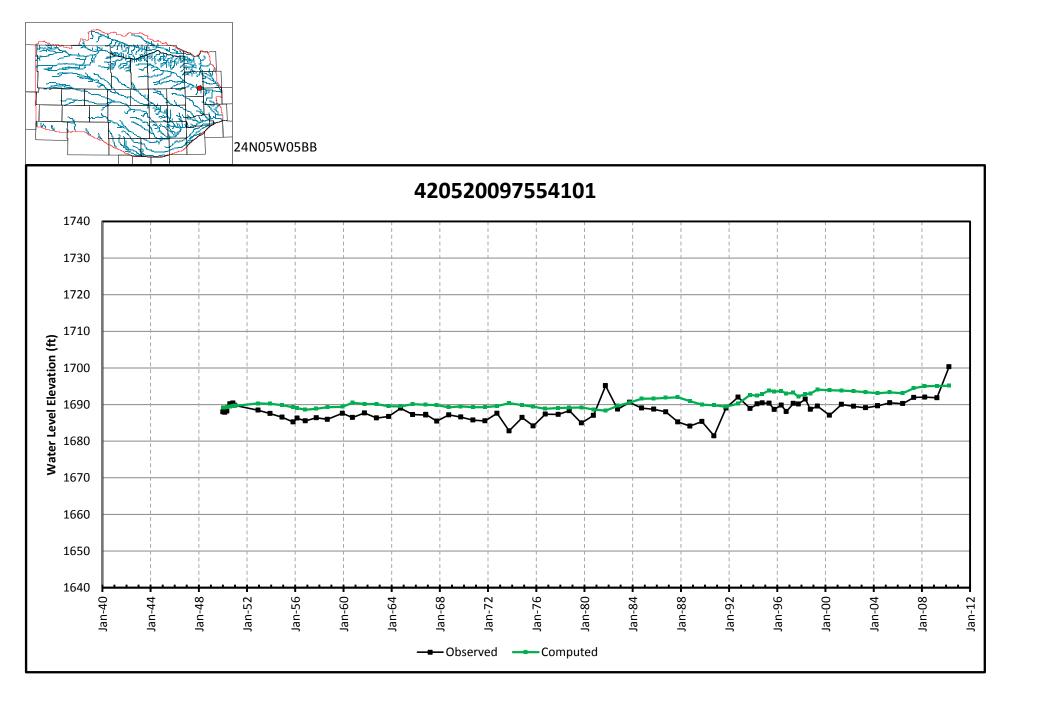


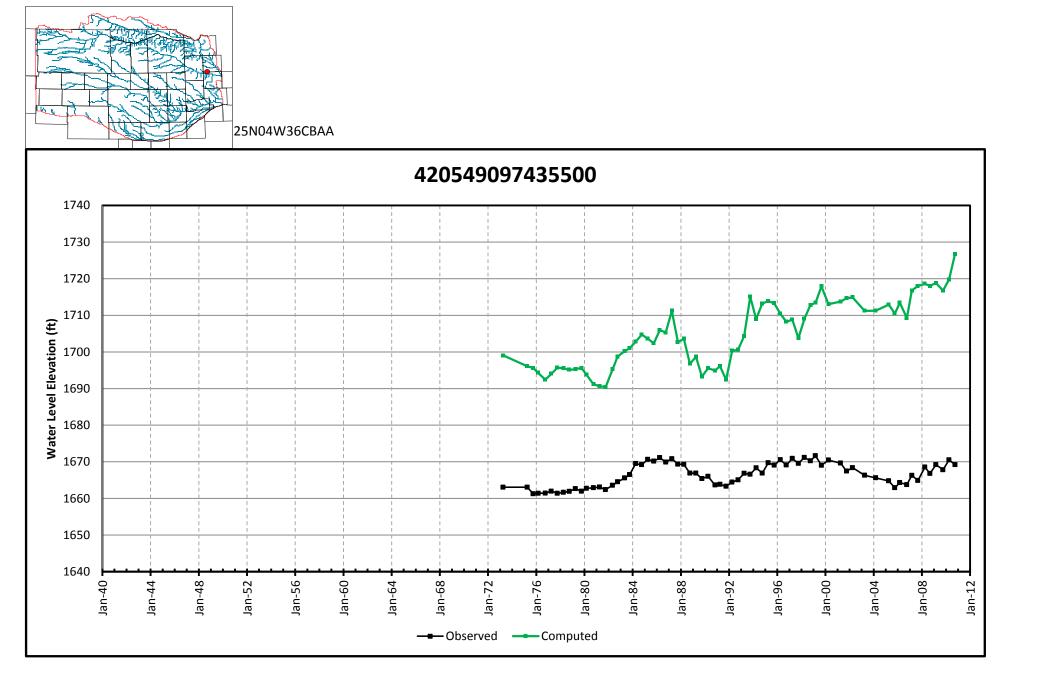


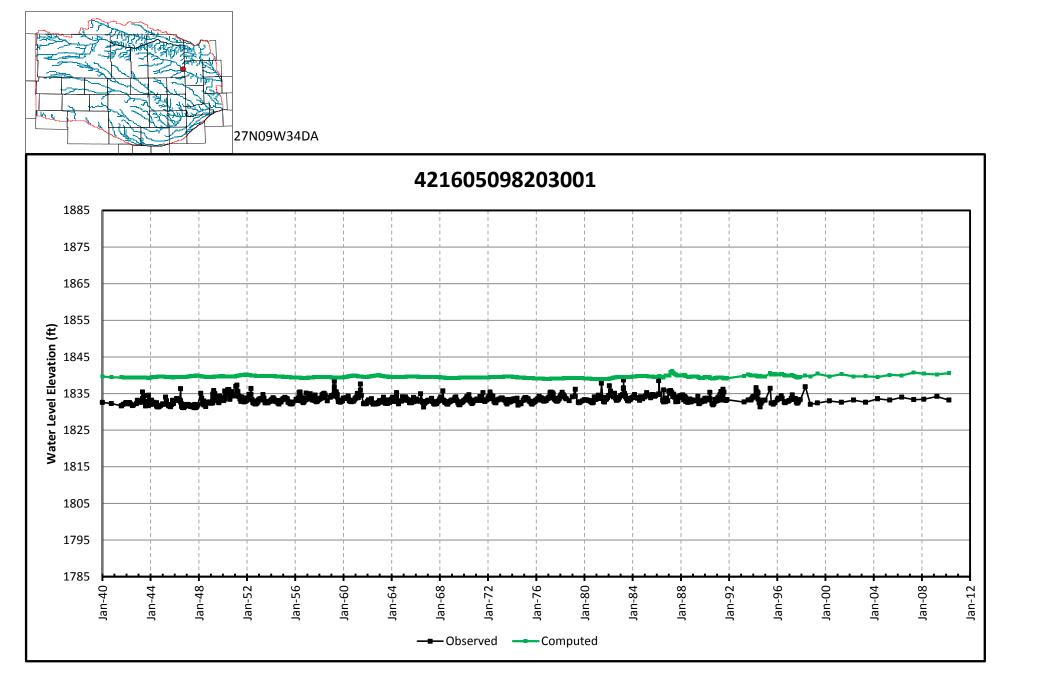


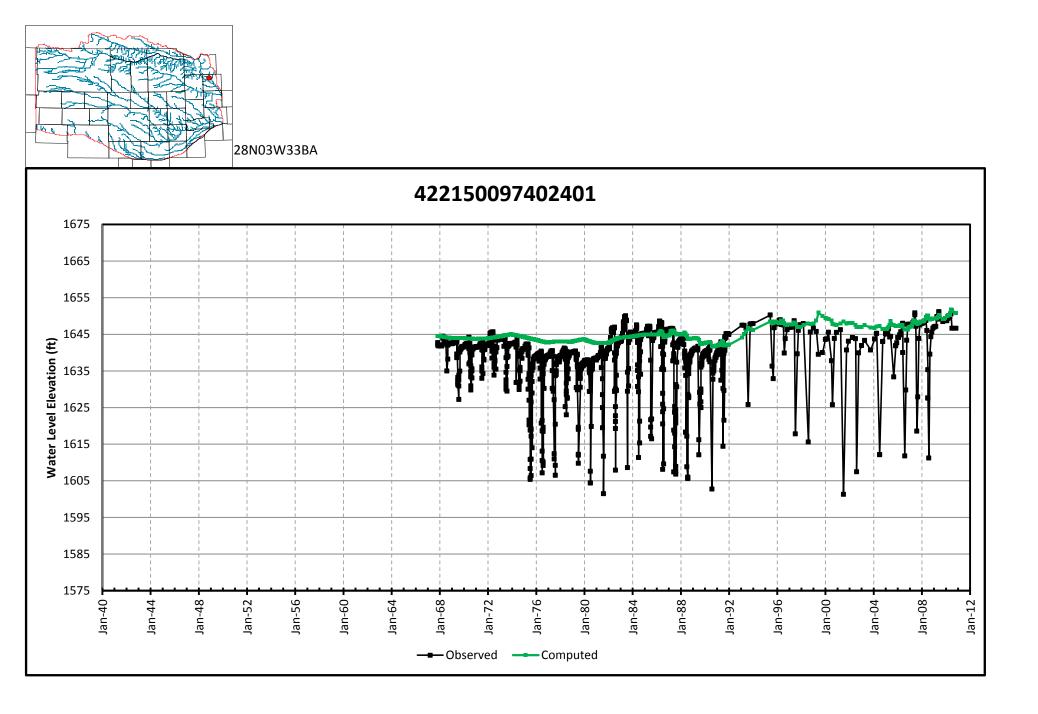


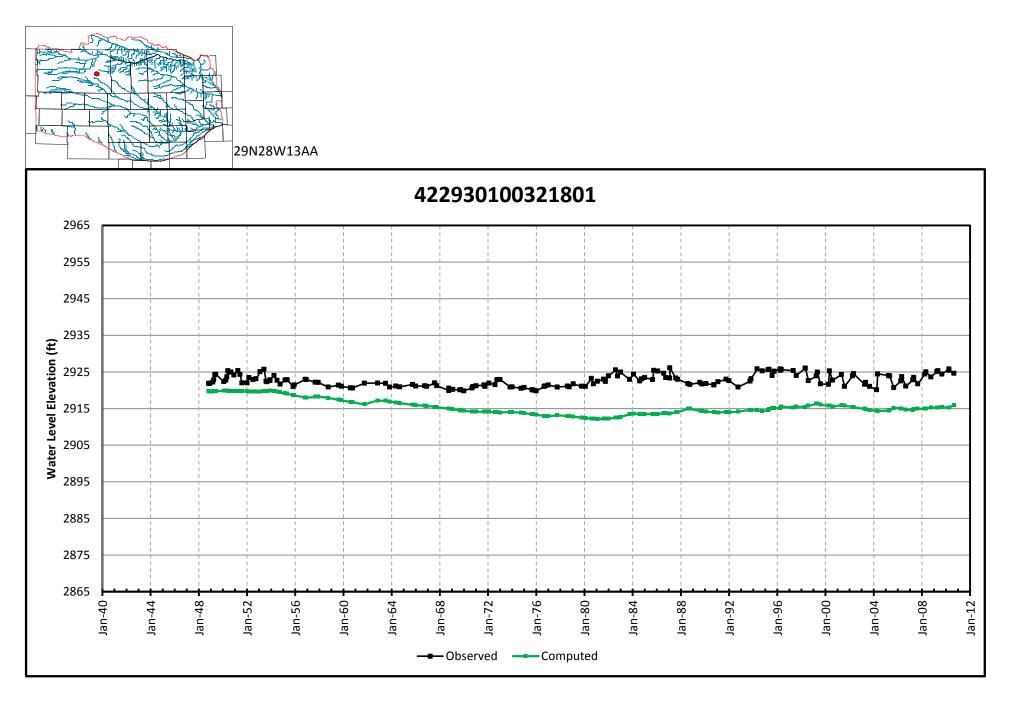


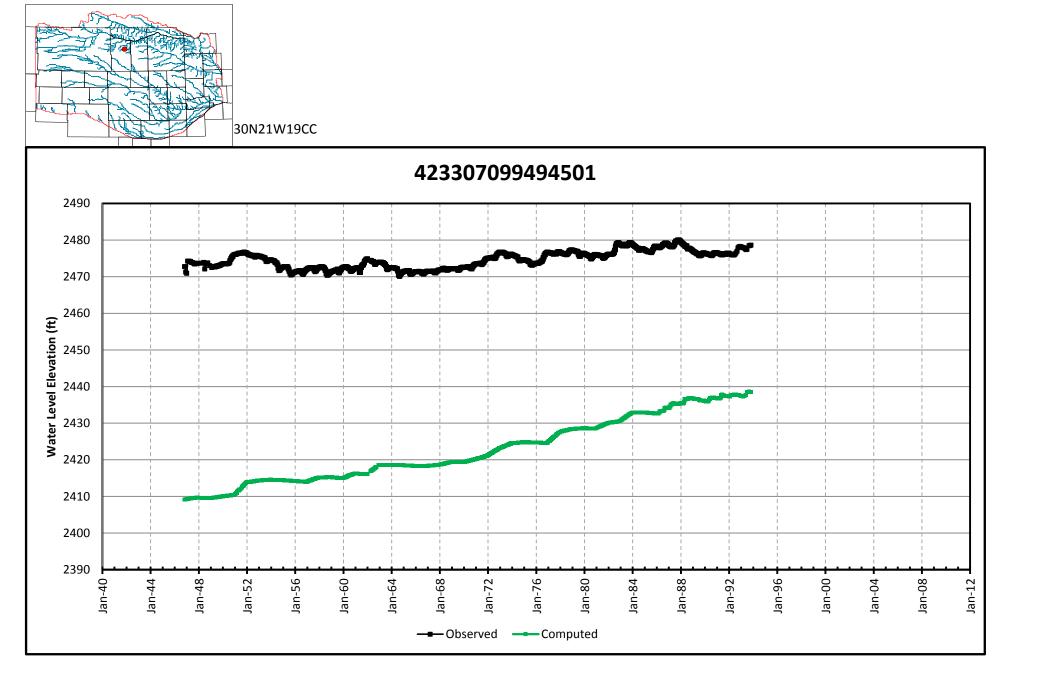


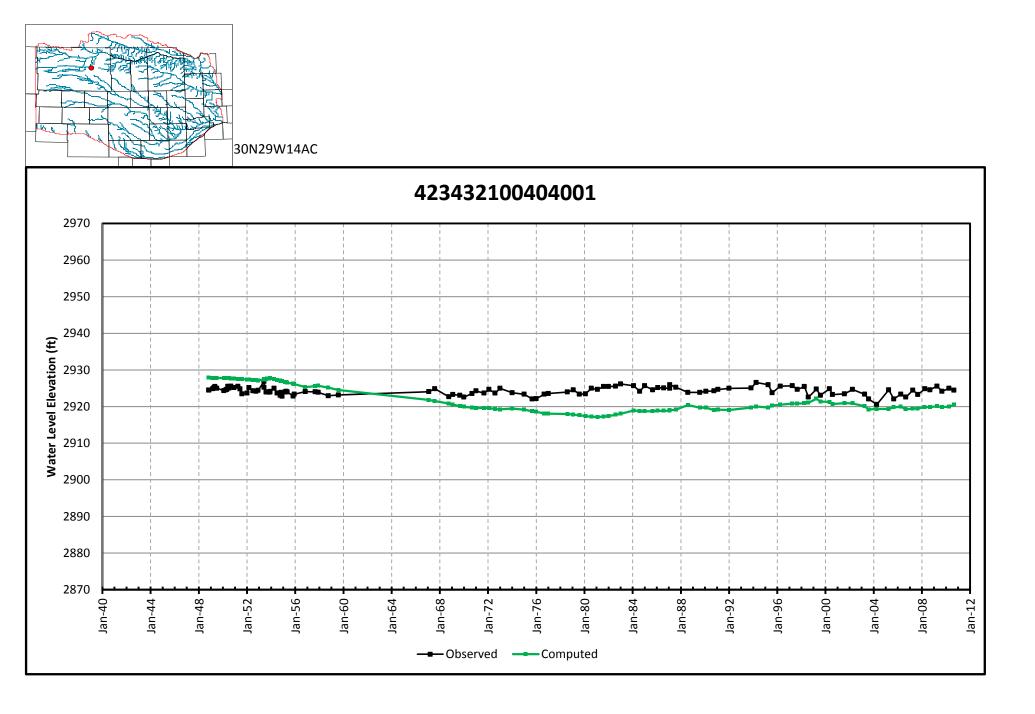


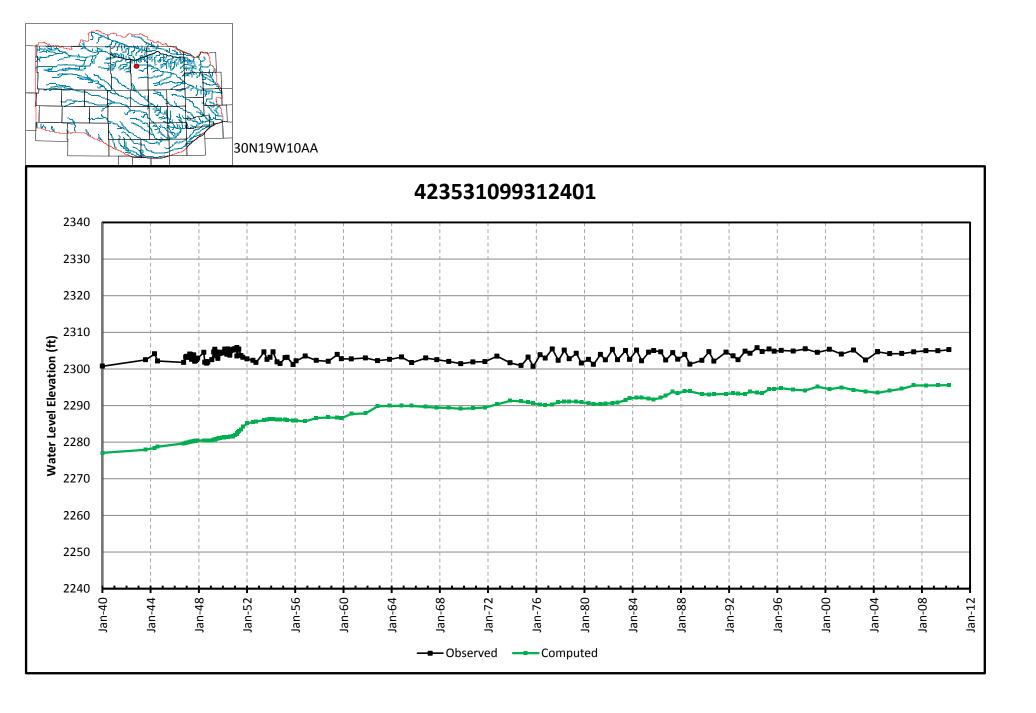


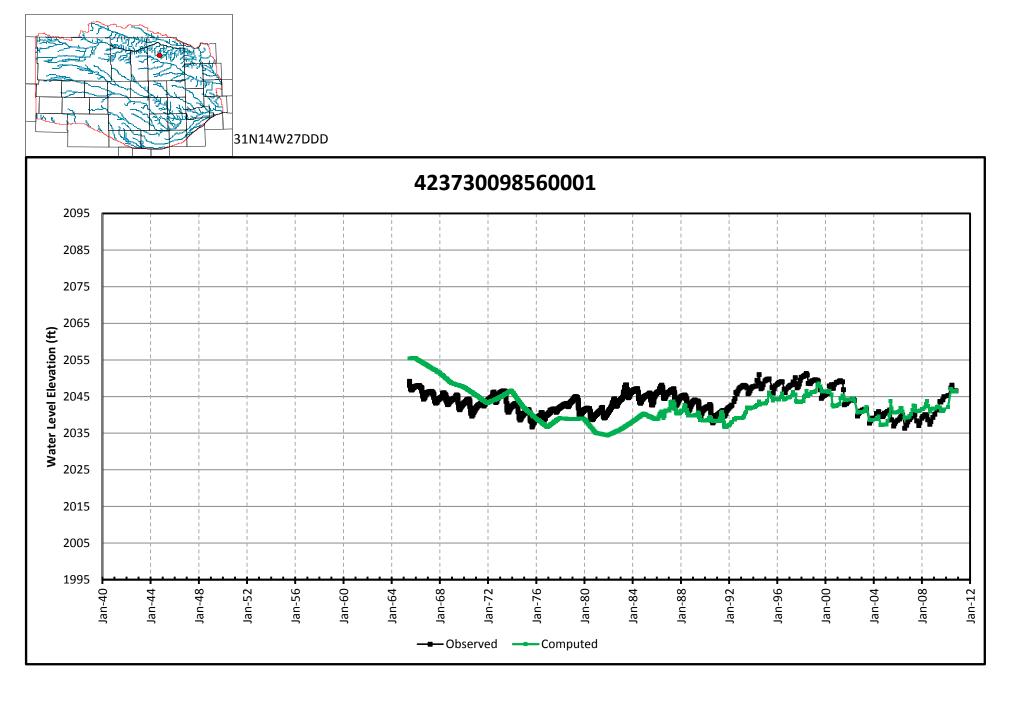


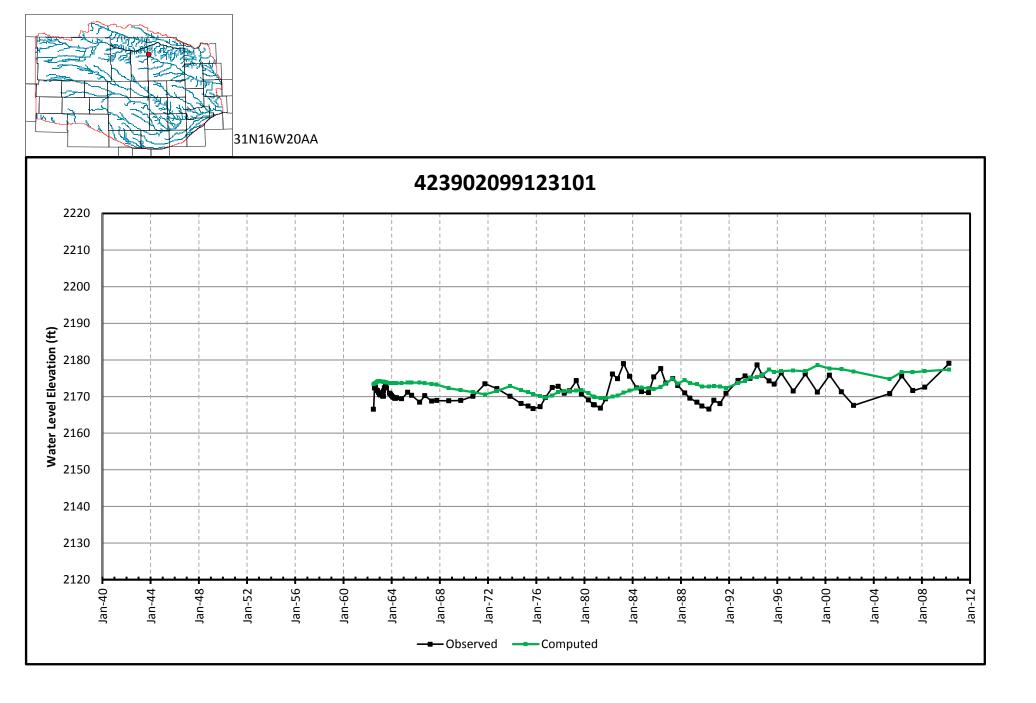


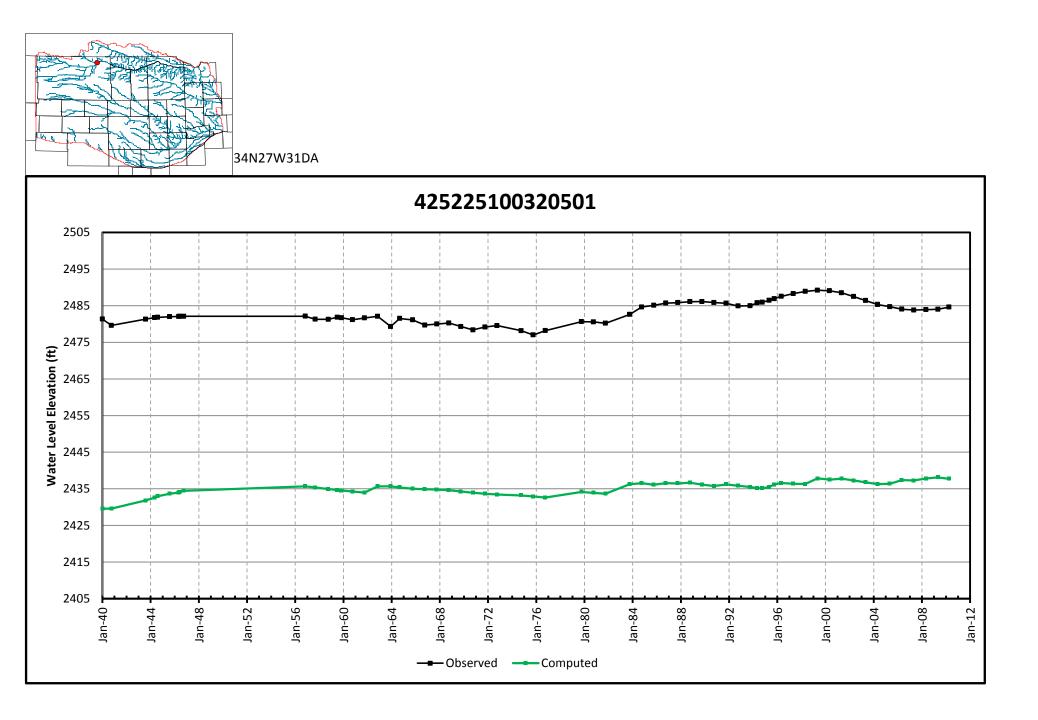


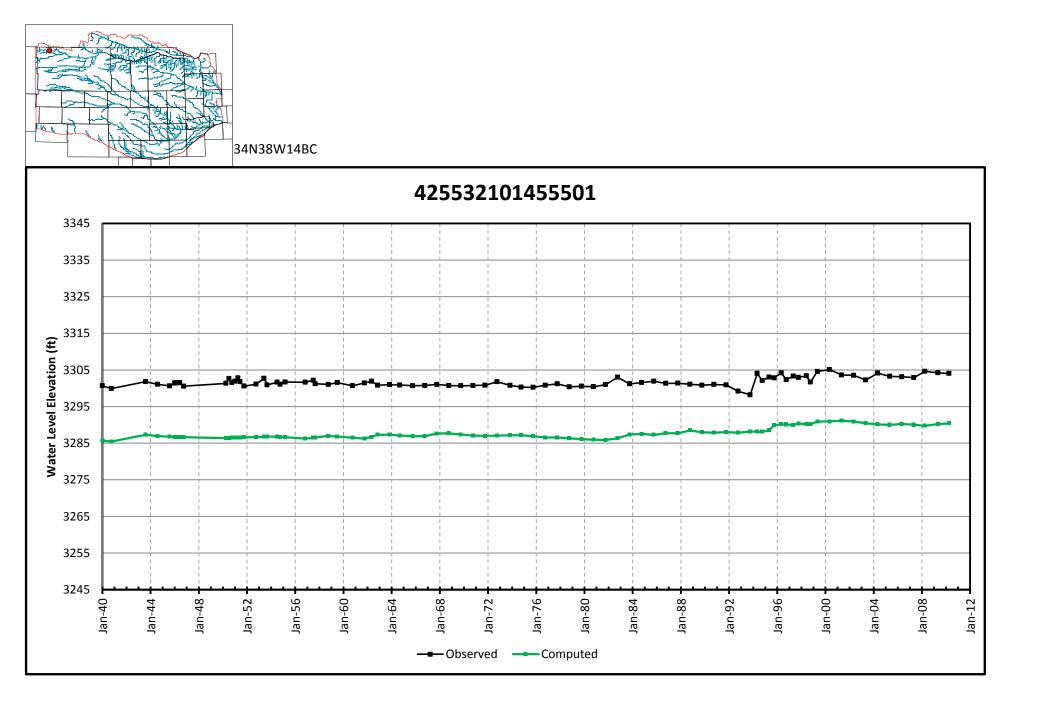


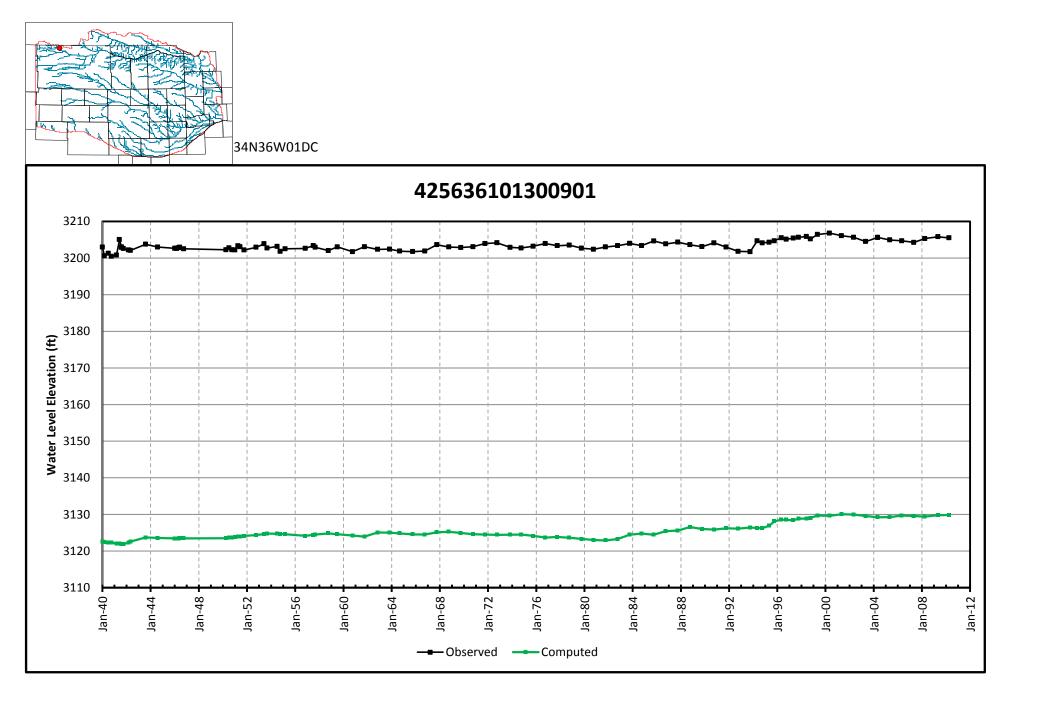


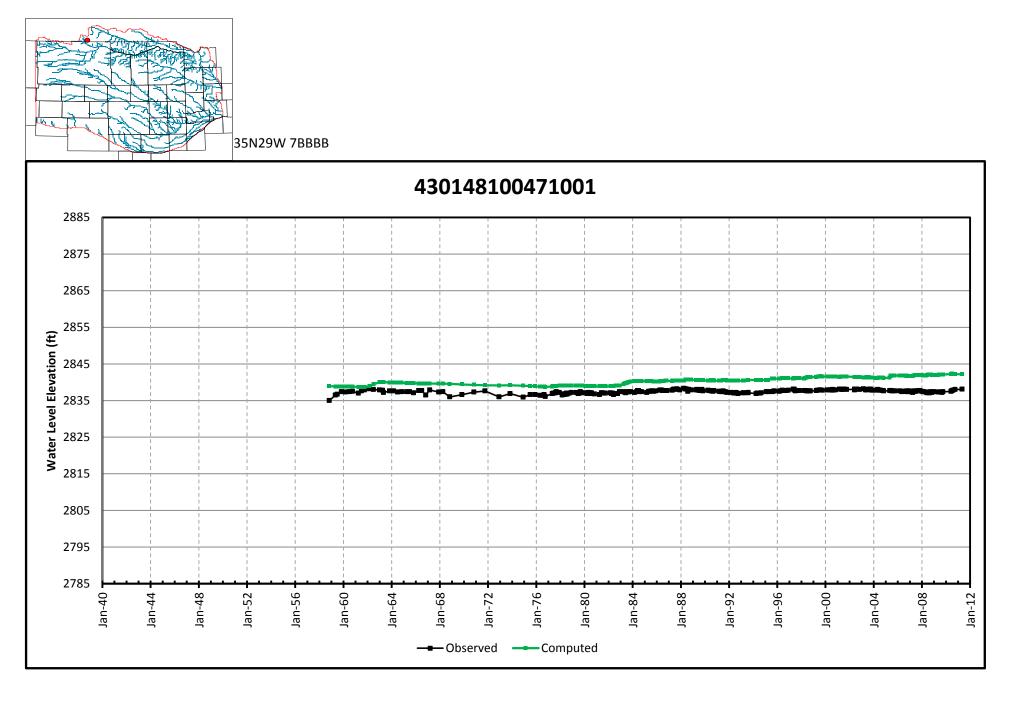


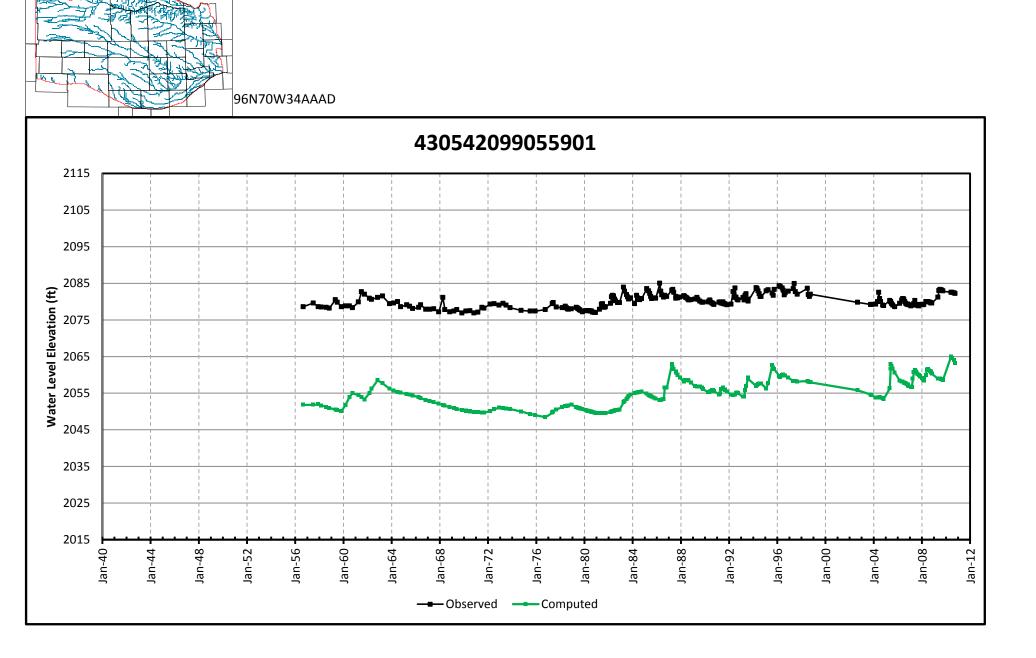


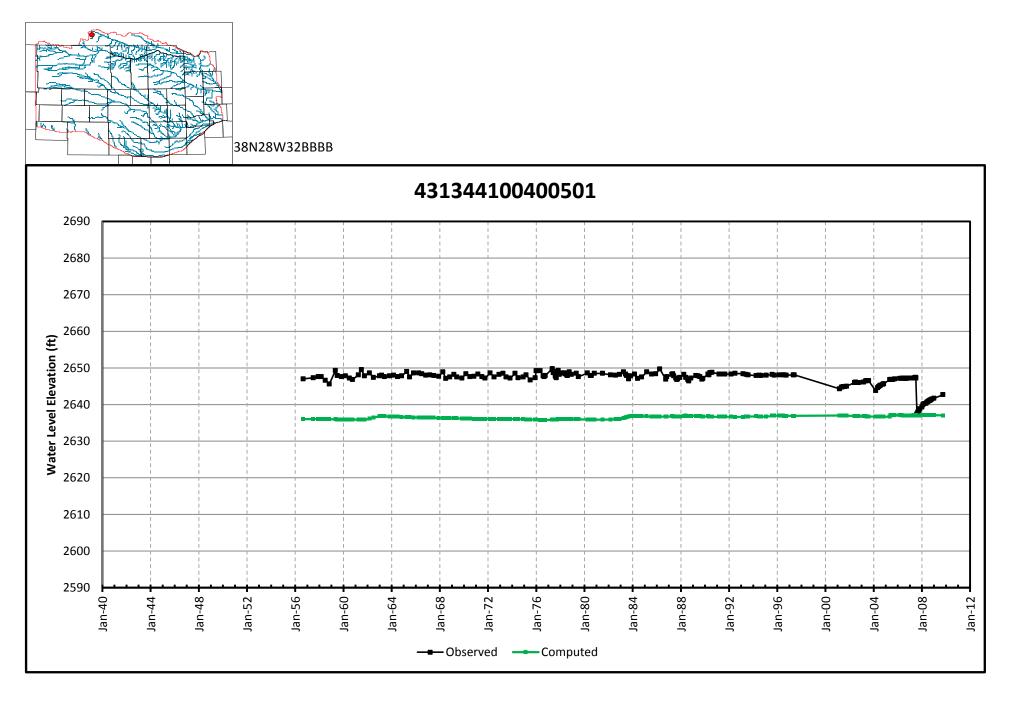


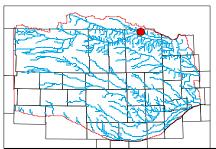


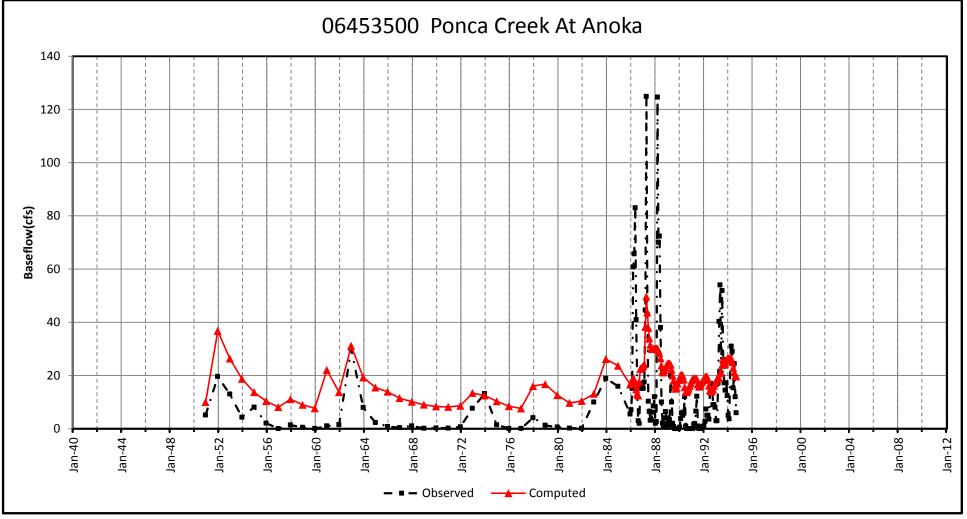


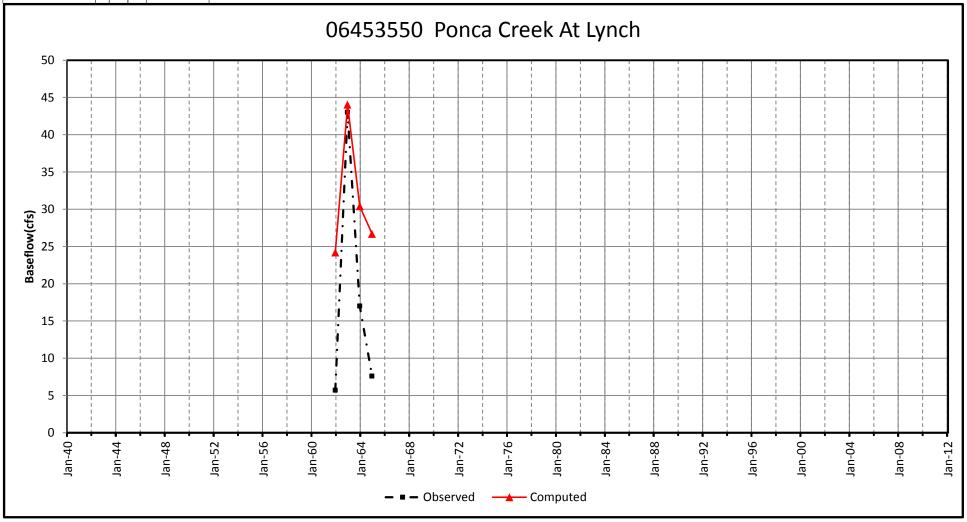


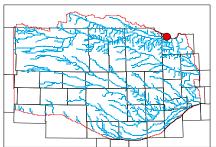


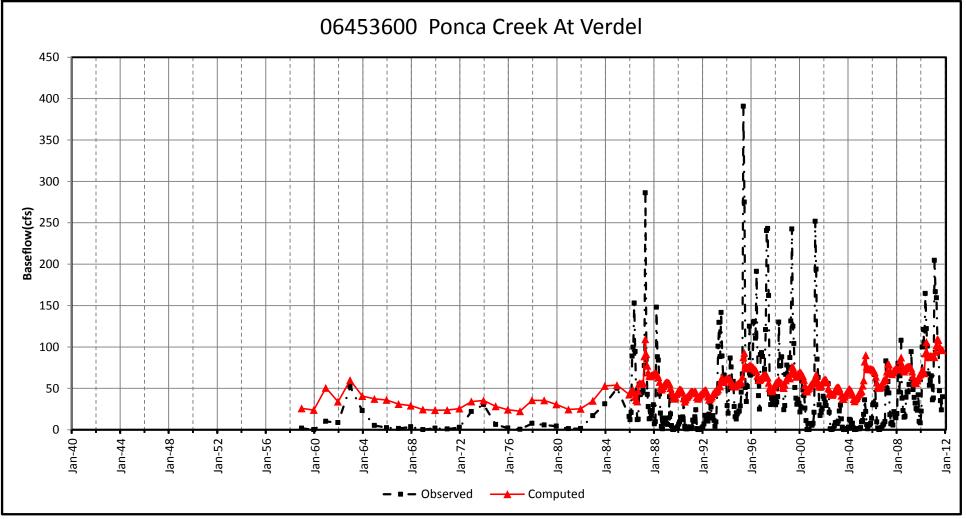


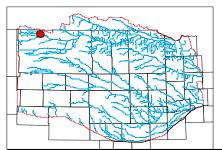


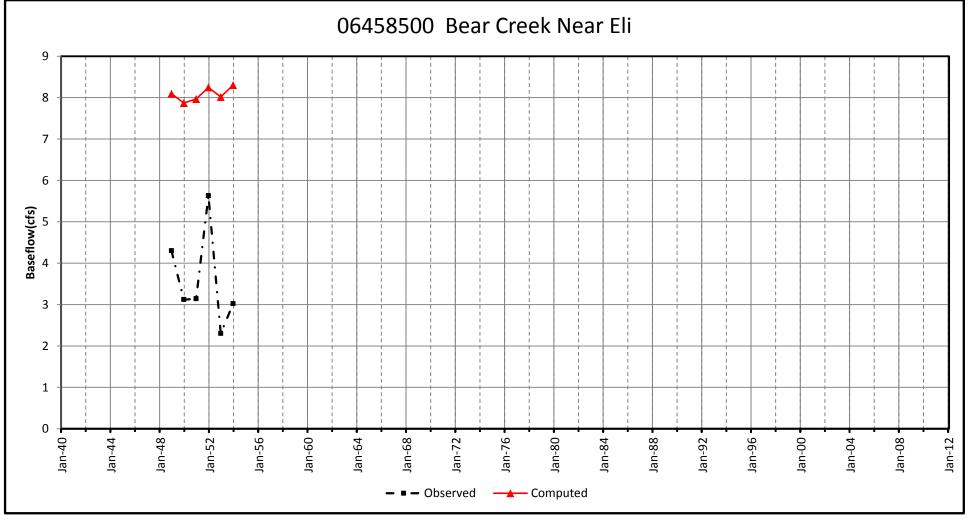


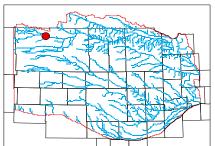

Appendix D: Baseflow Hydrographs

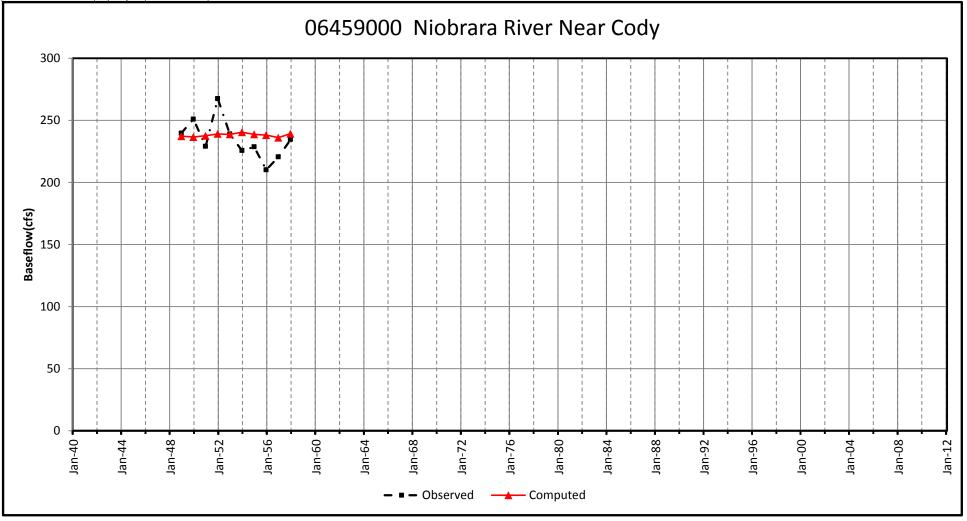




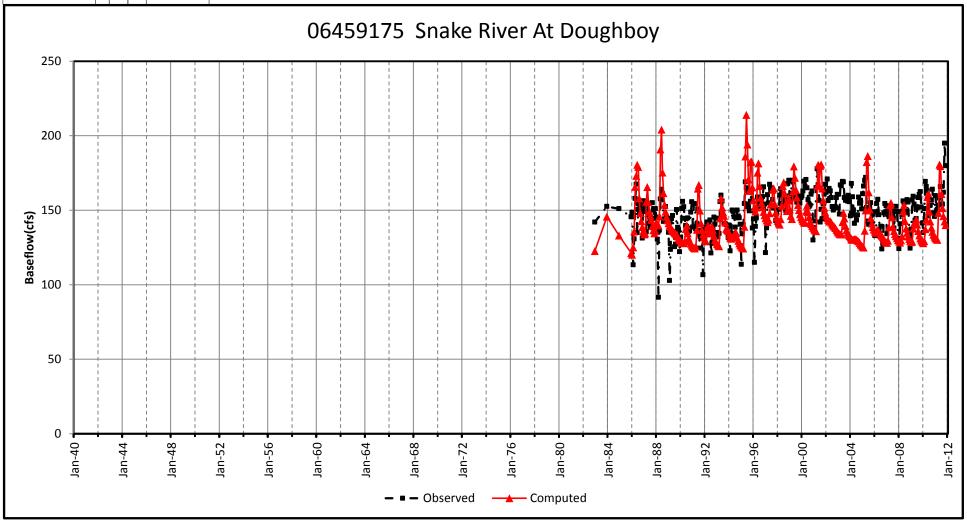


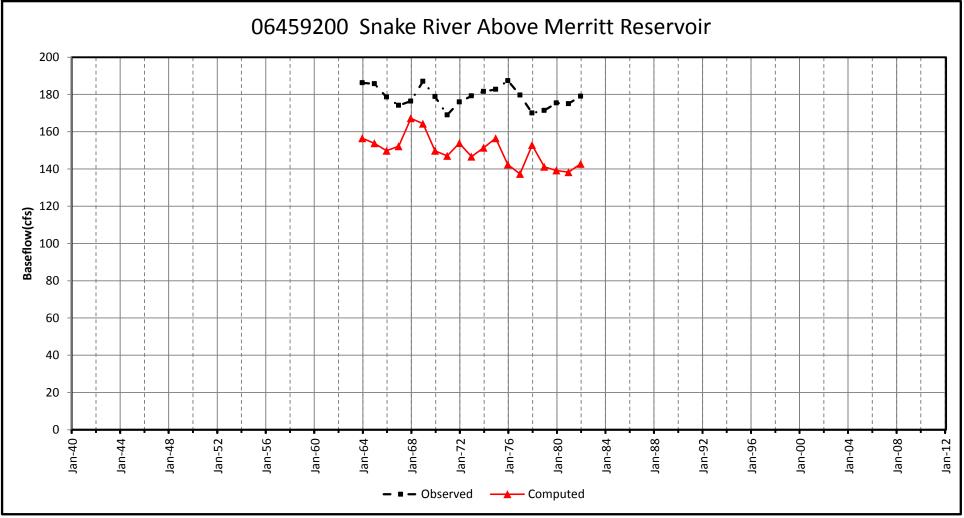


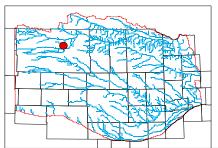


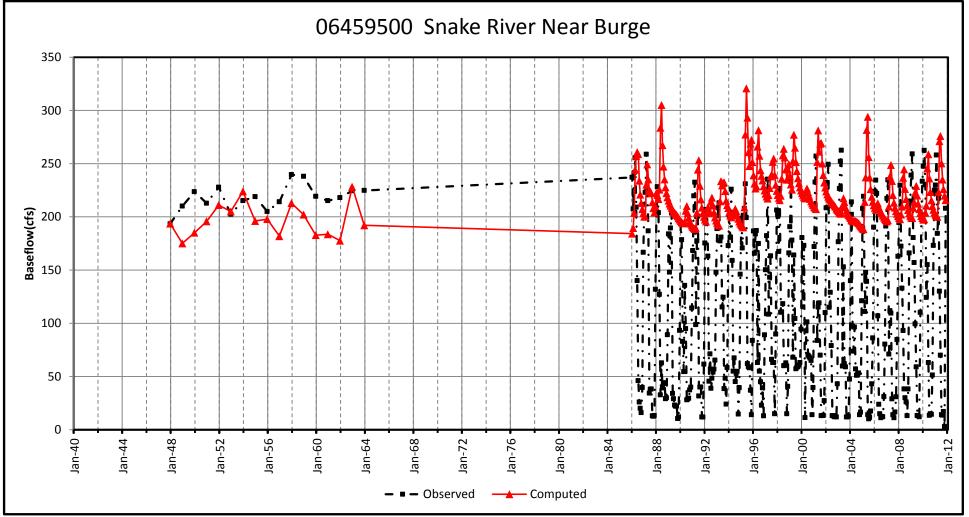


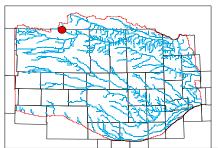


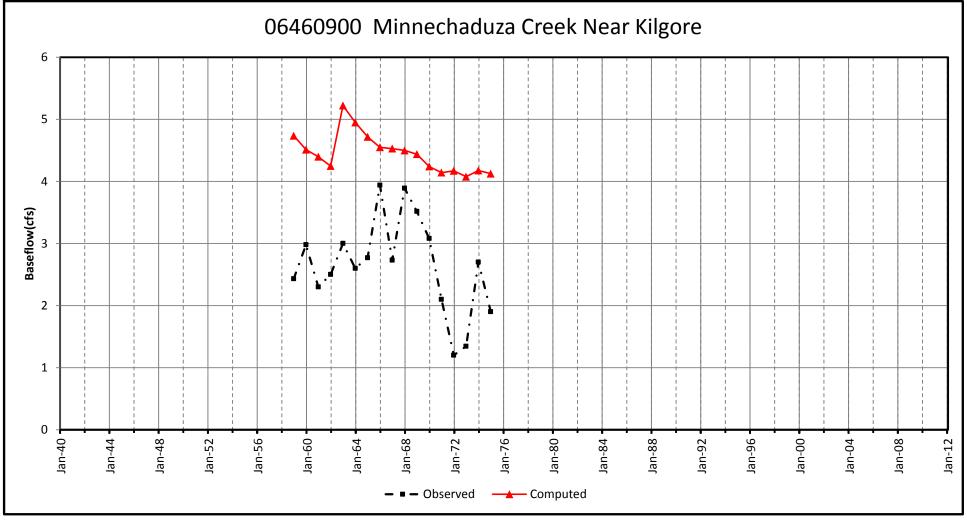


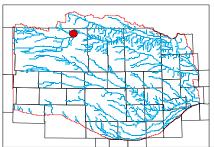


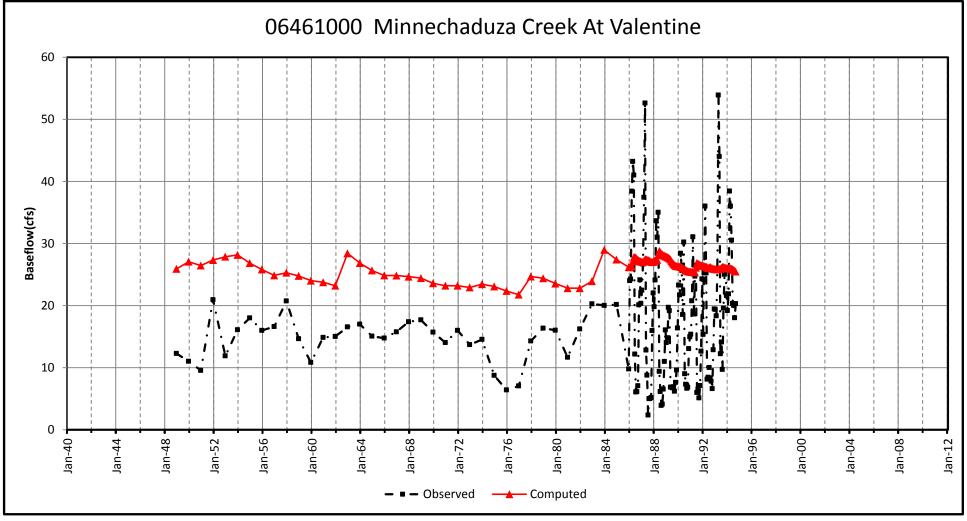


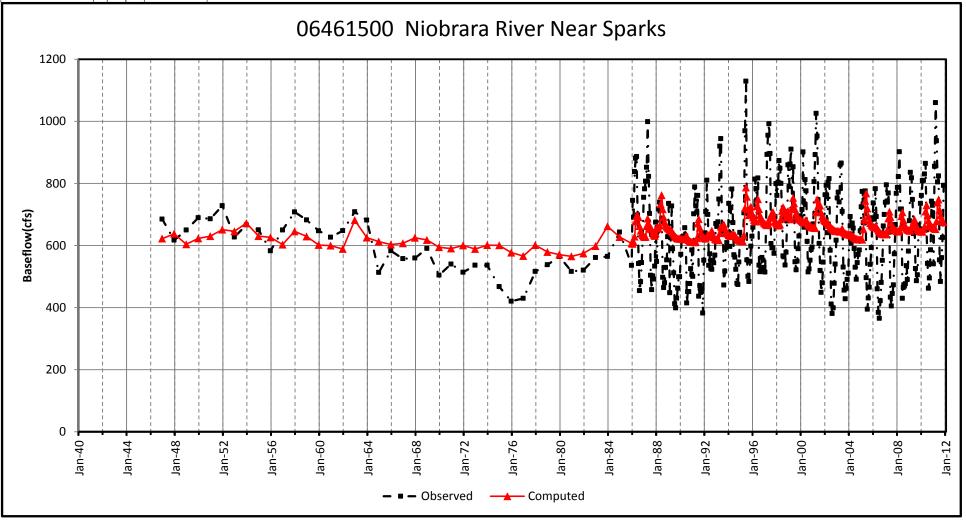


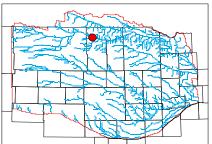


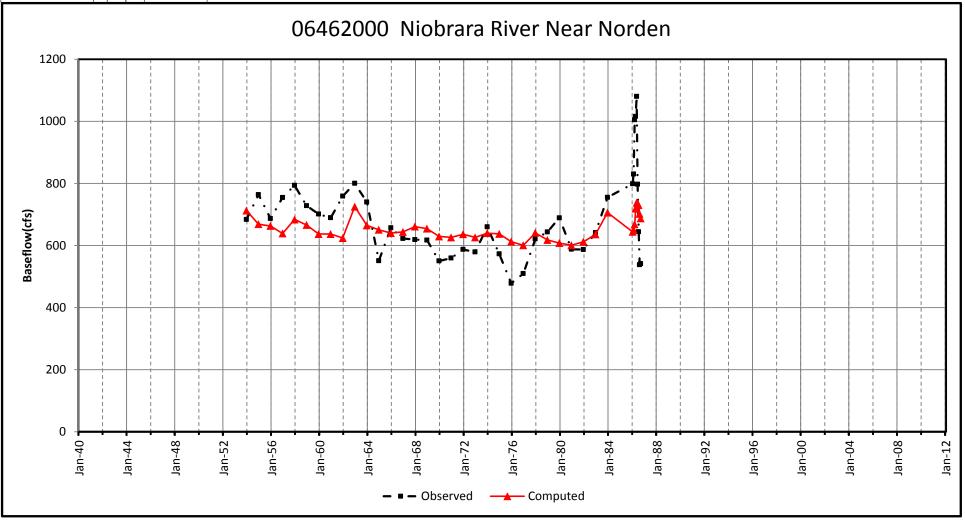


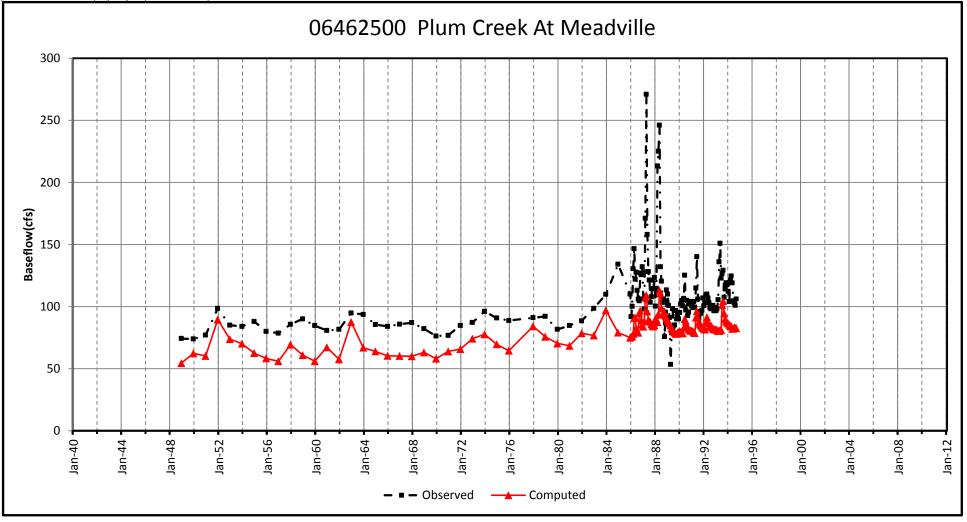


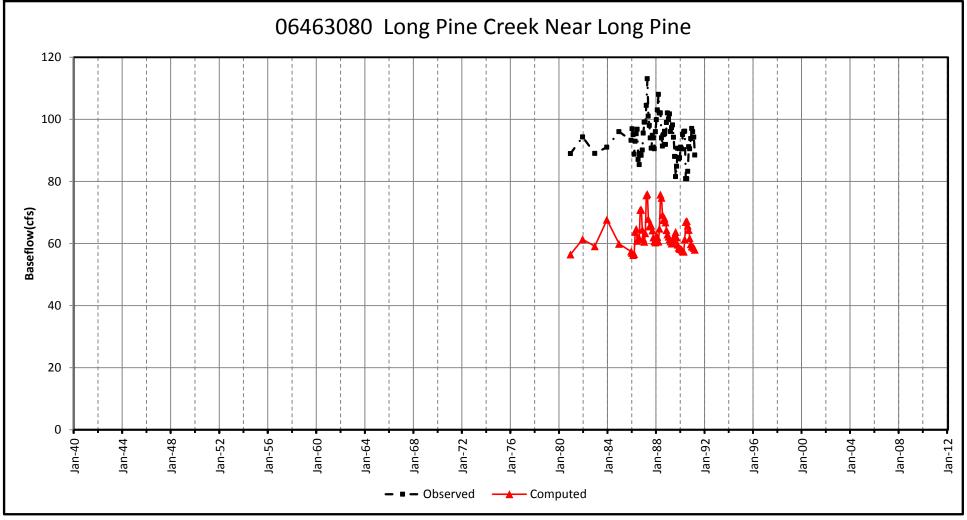


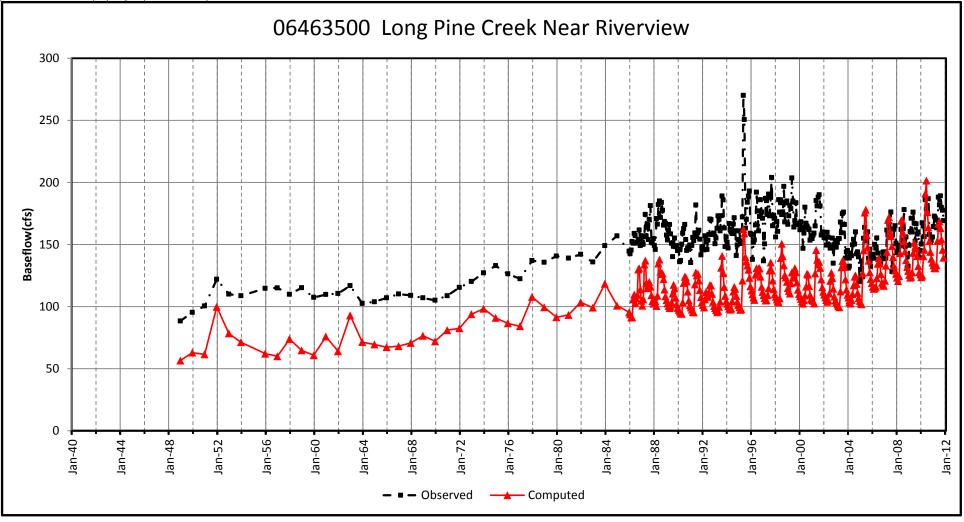


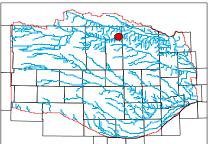


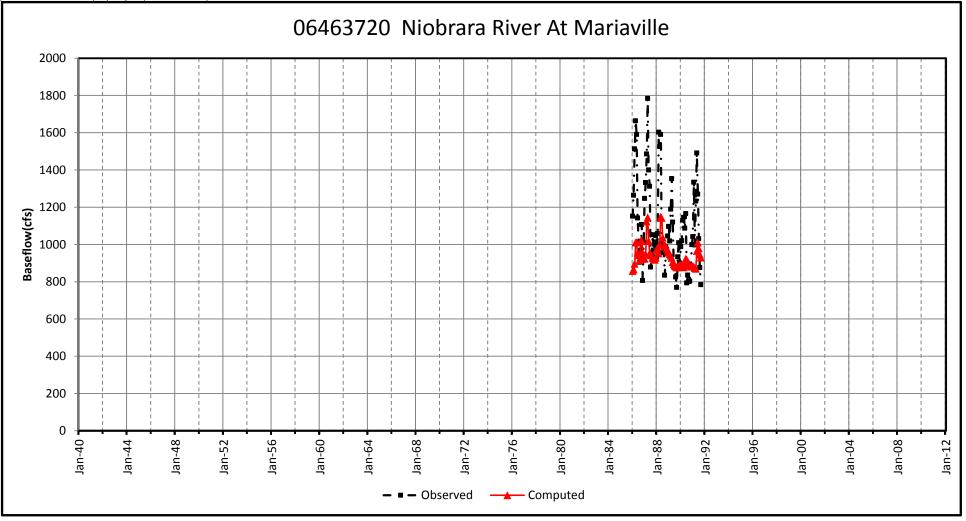


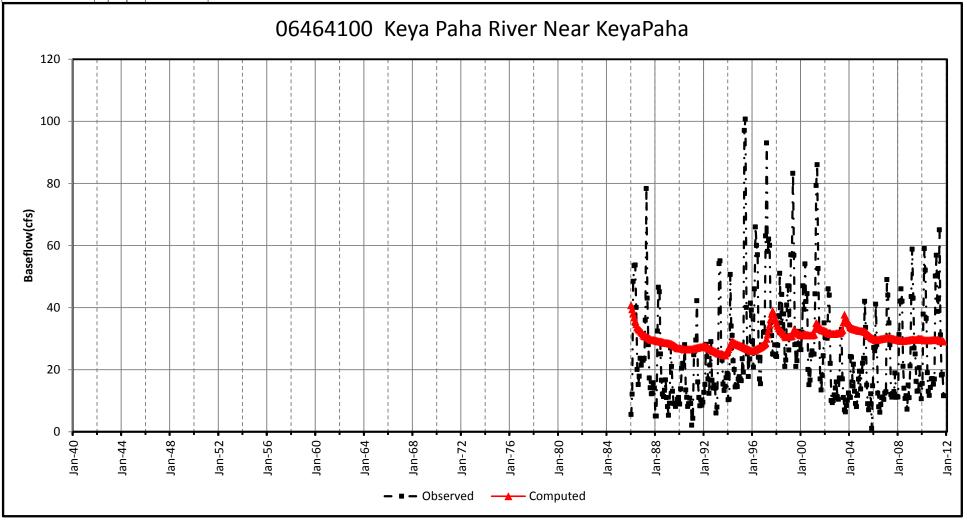


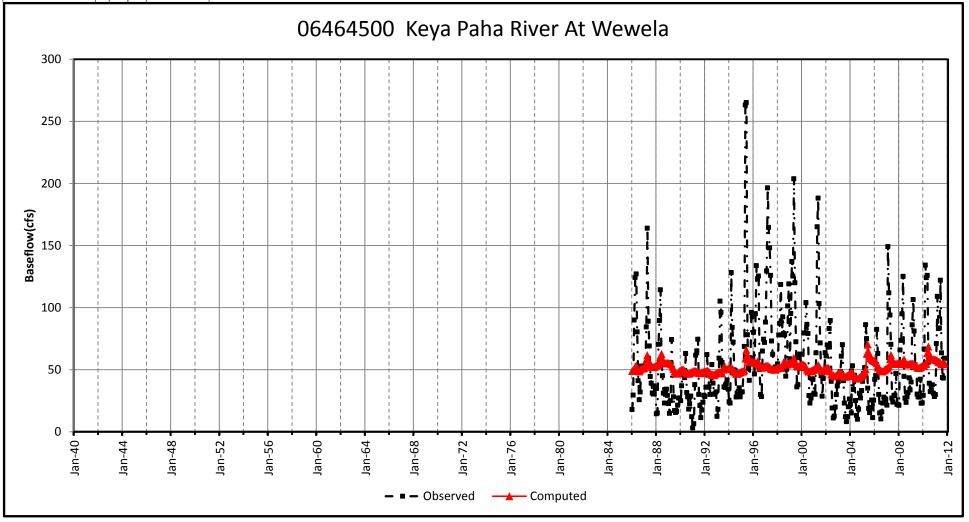


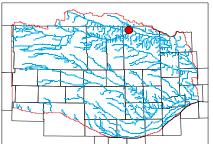


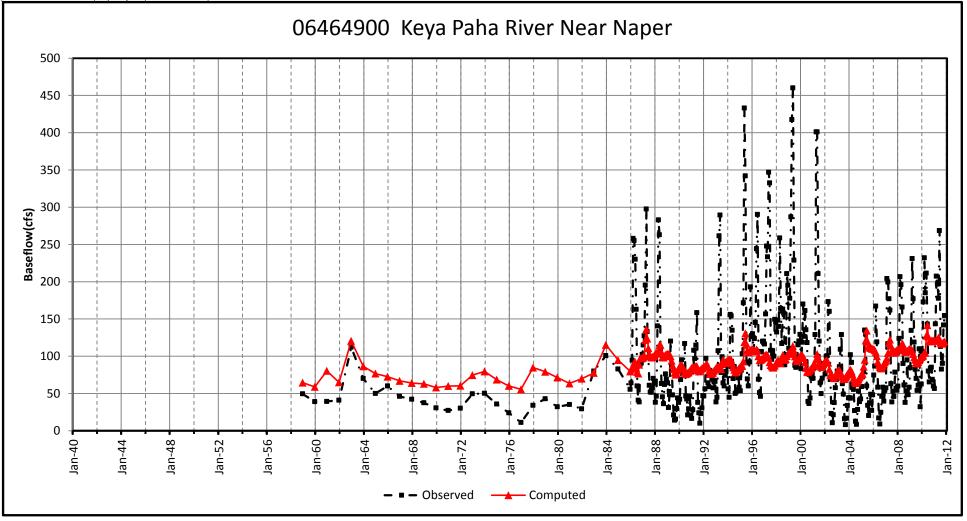




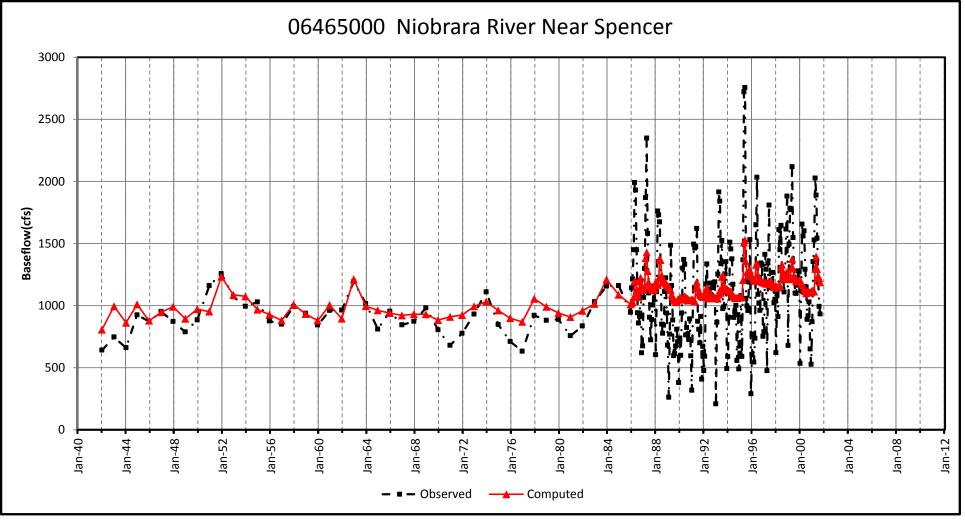


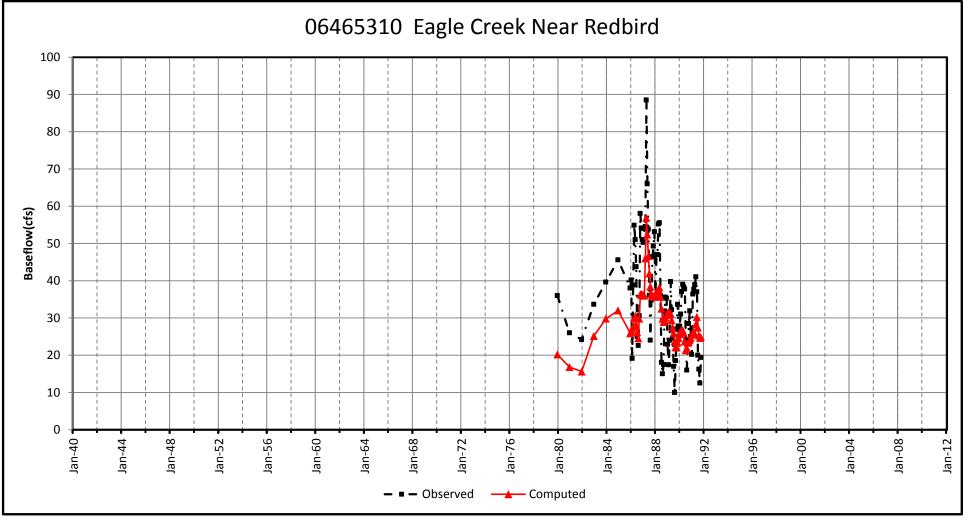


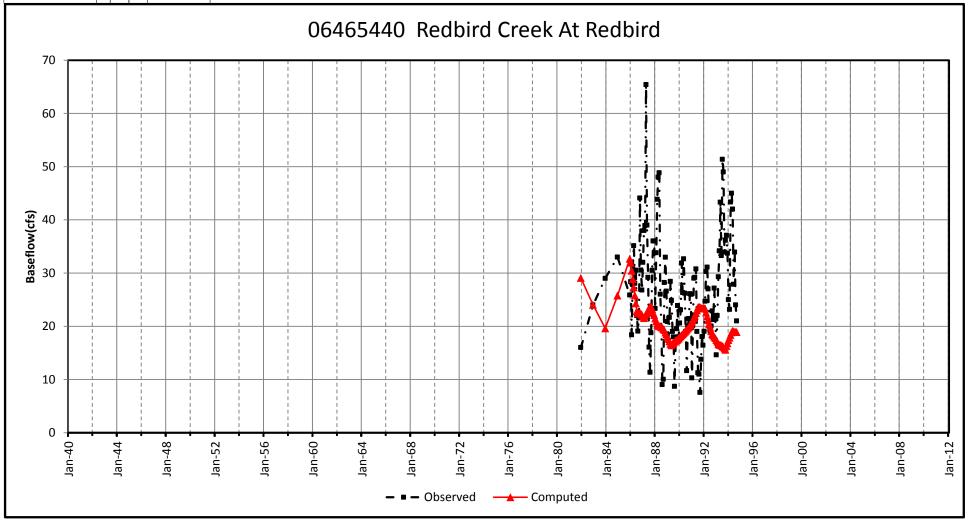


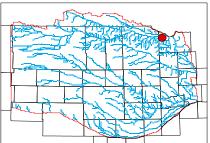


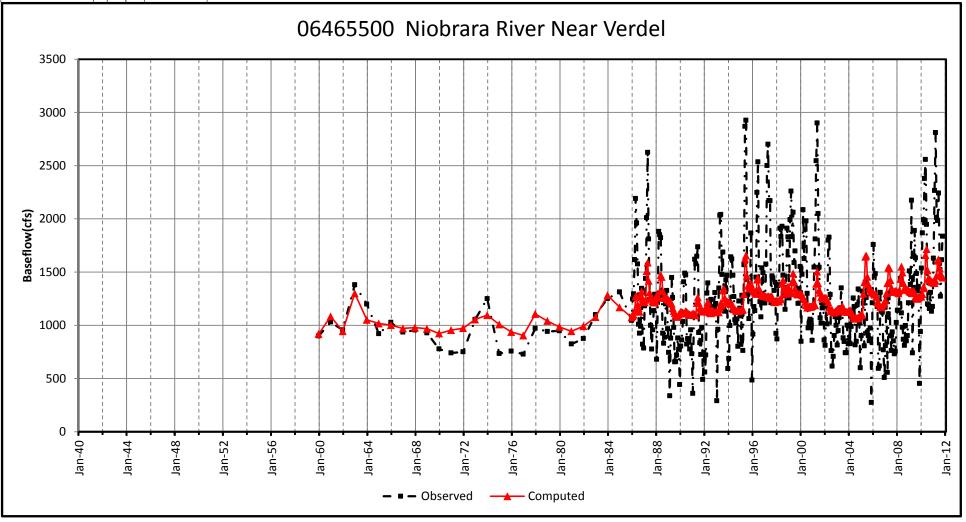


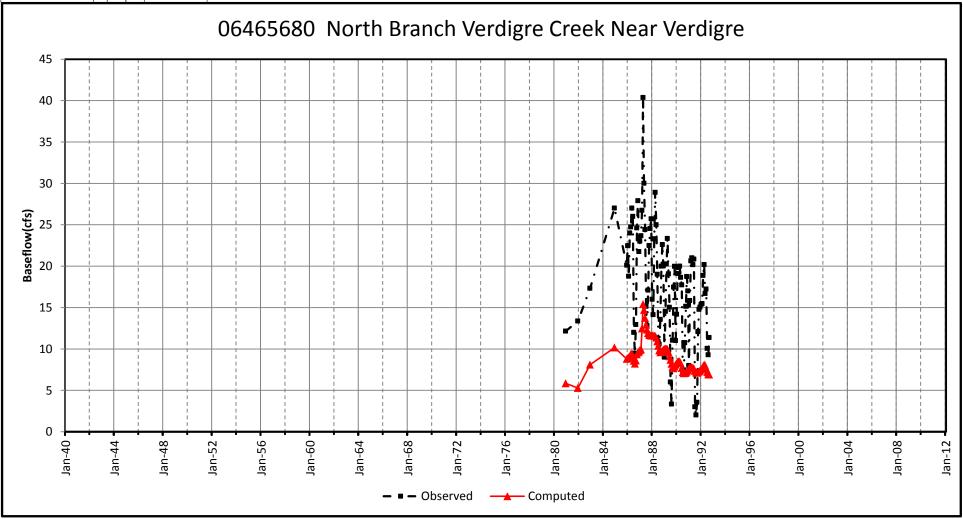


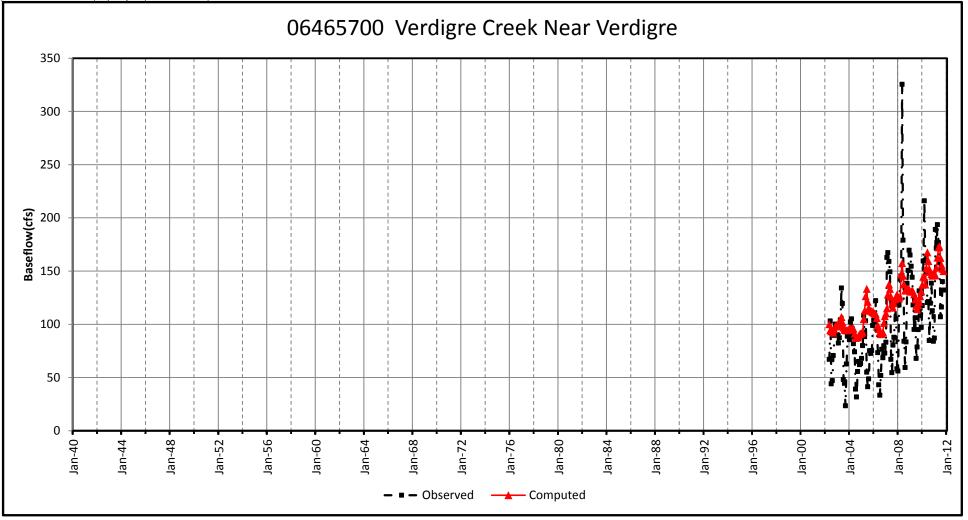


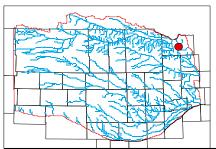


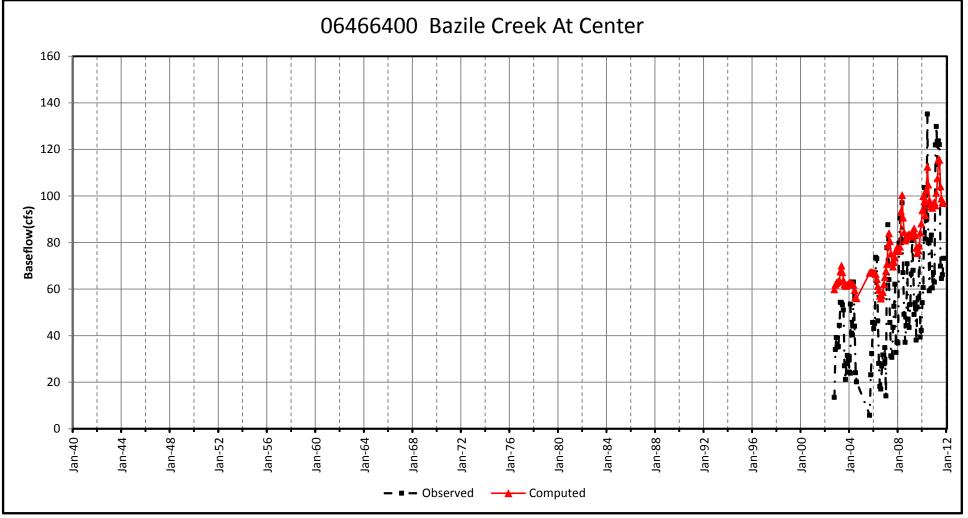


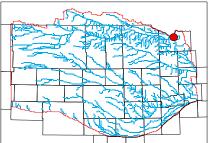


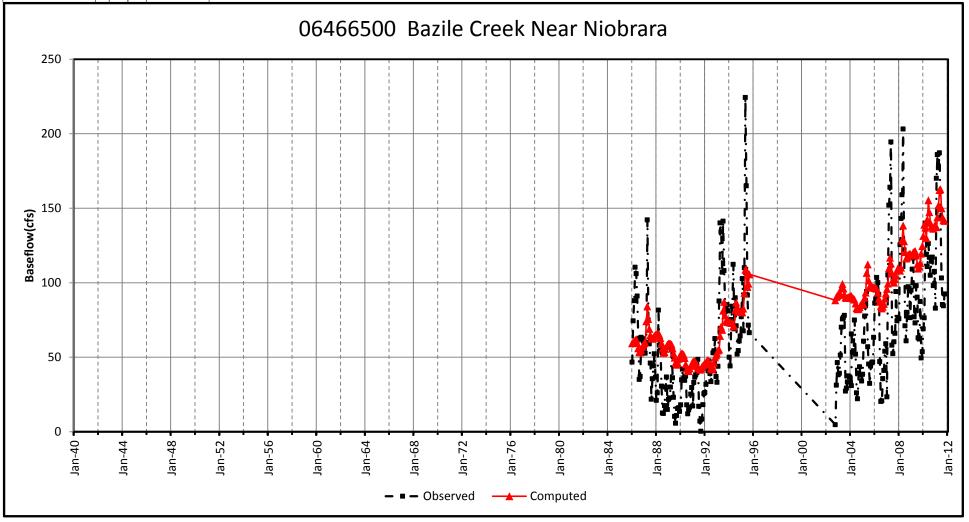


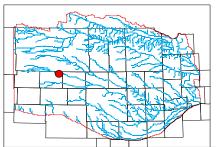


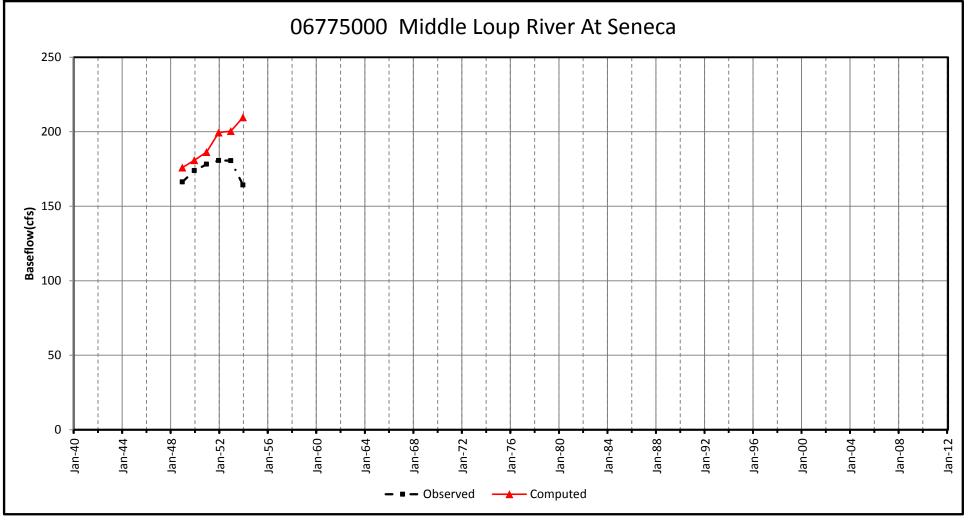


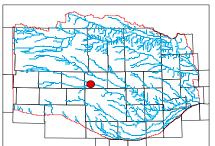


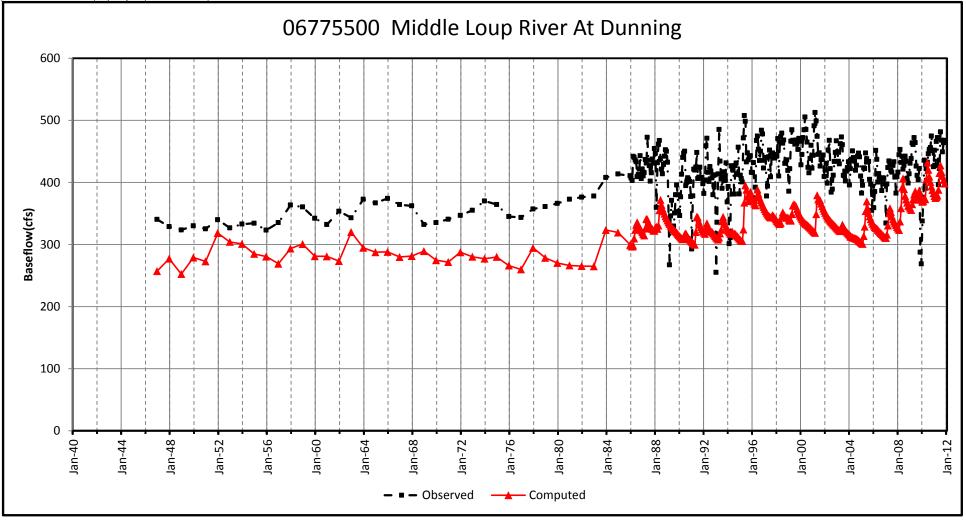




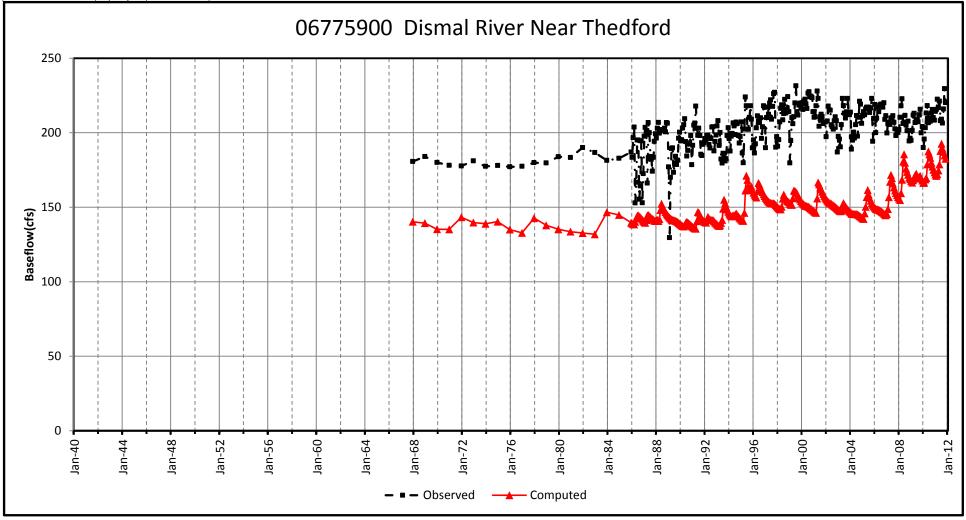


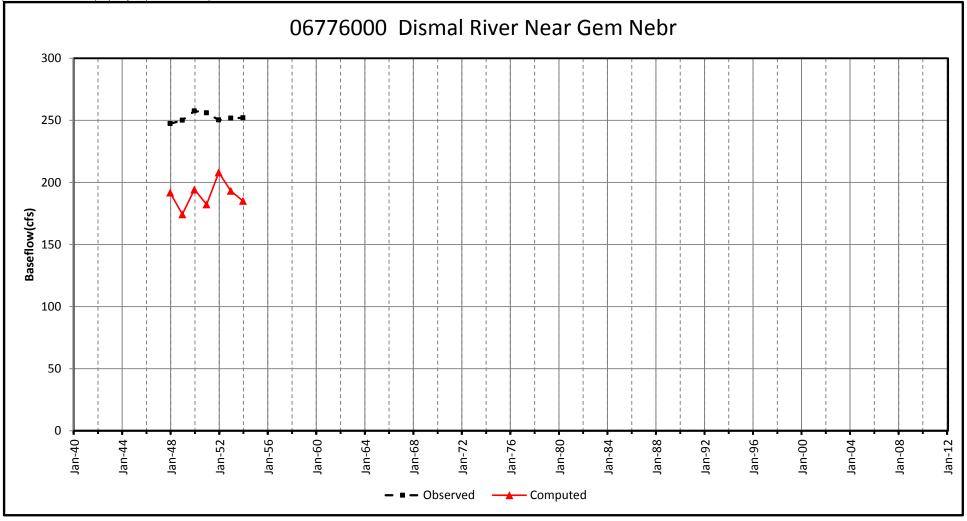


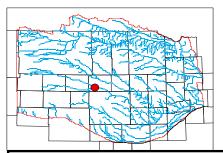


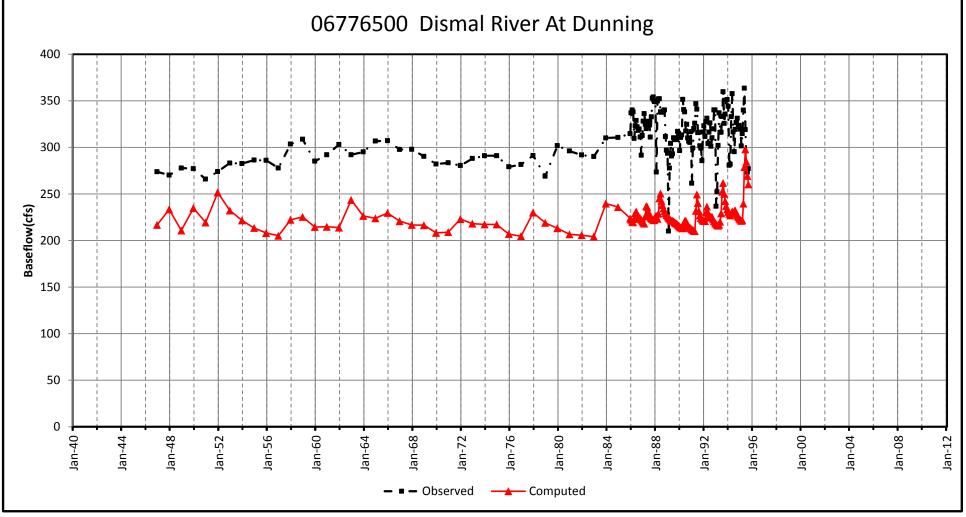


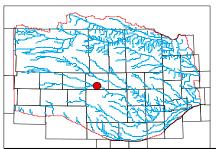


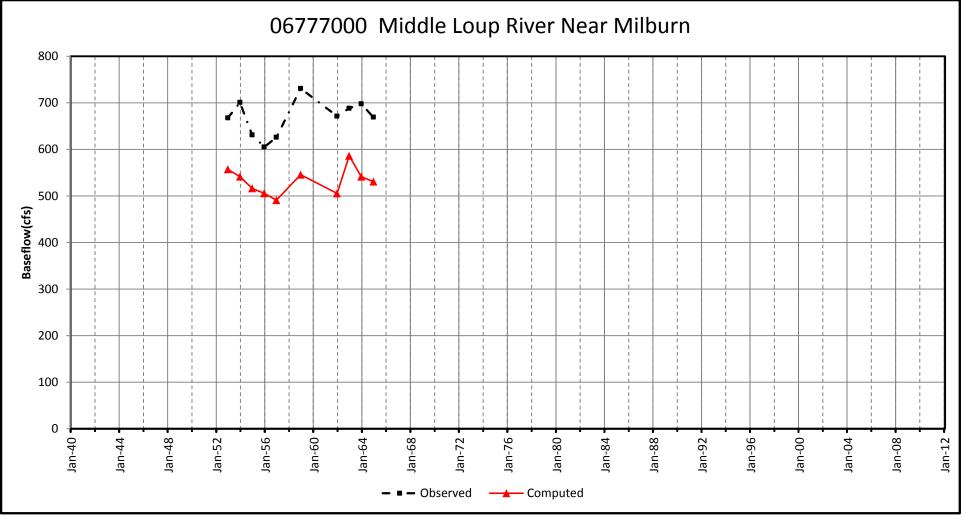


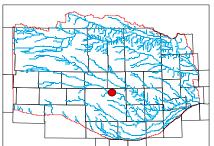


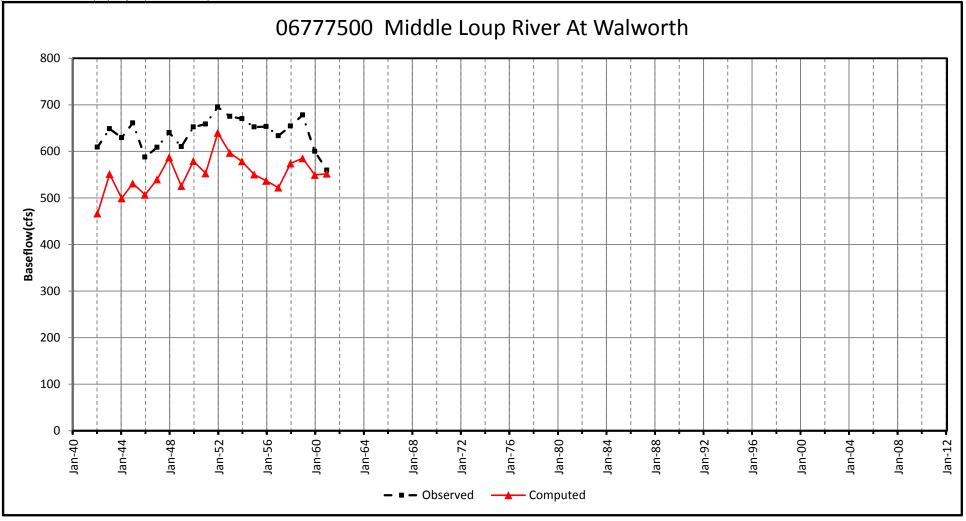


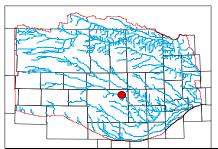


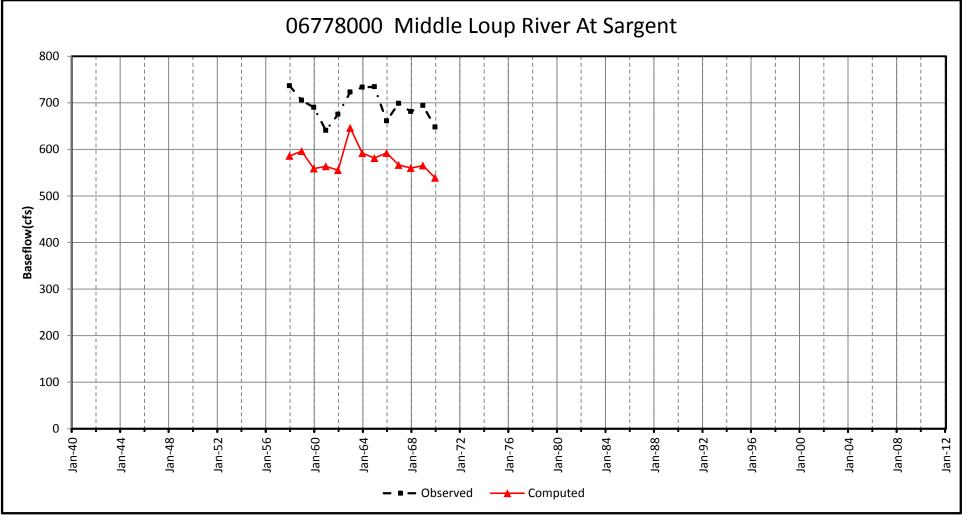


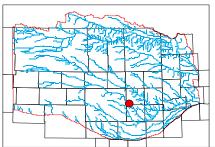


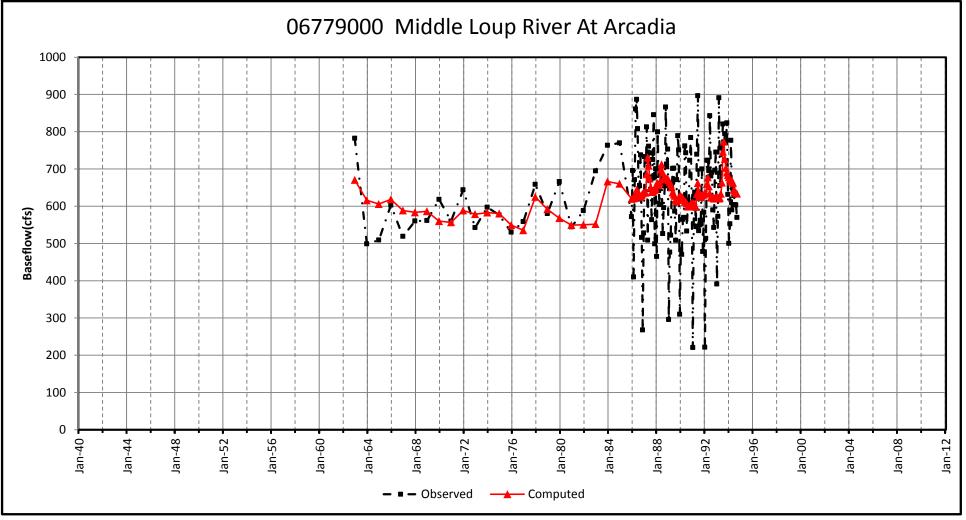


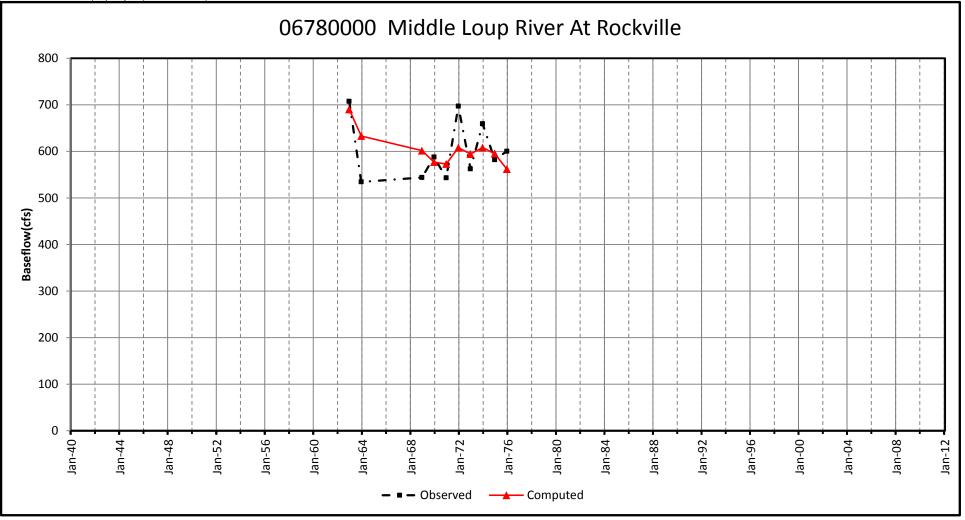




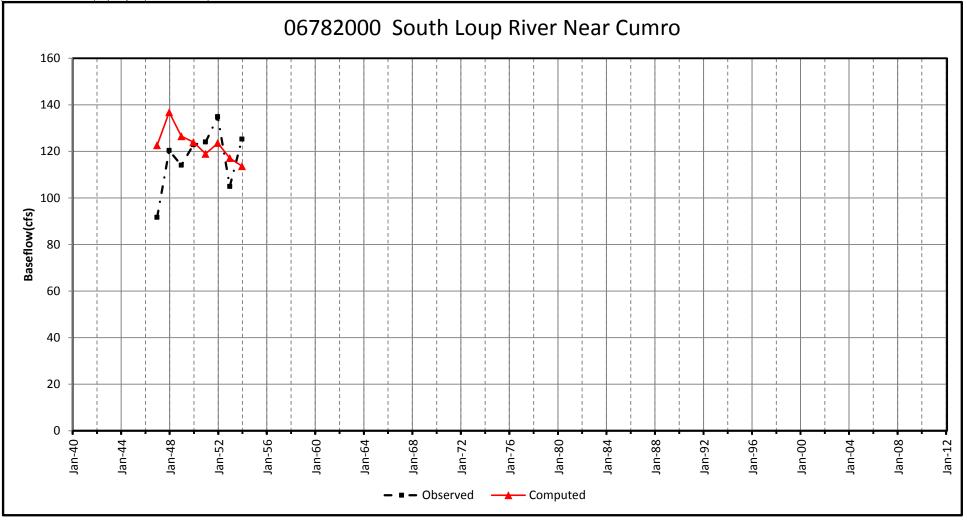


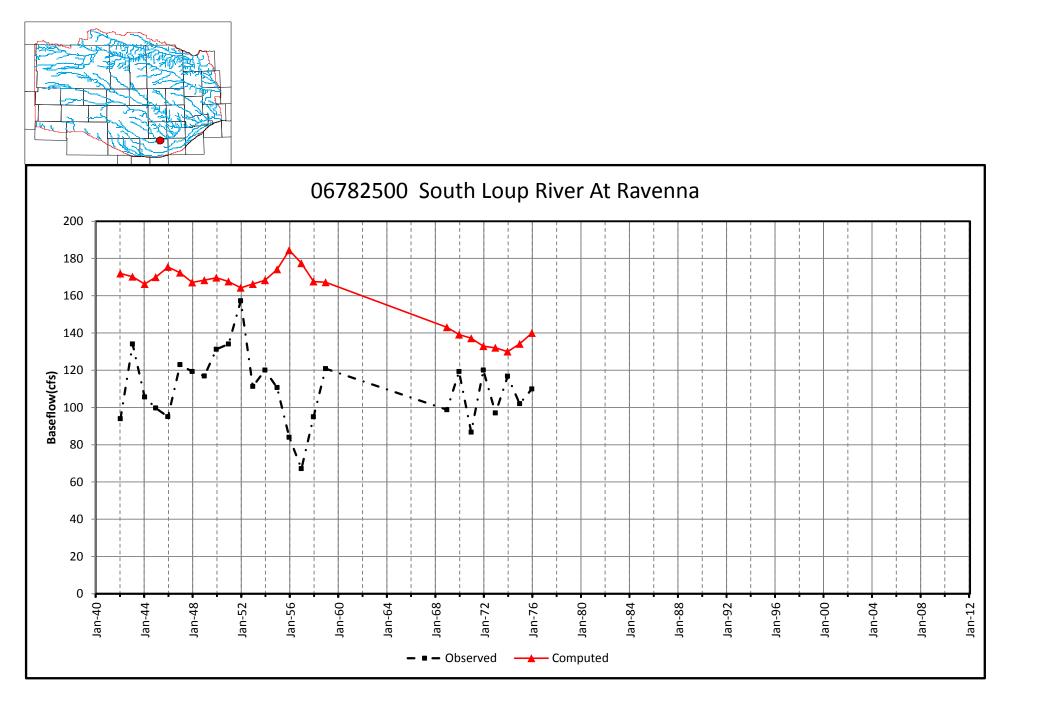


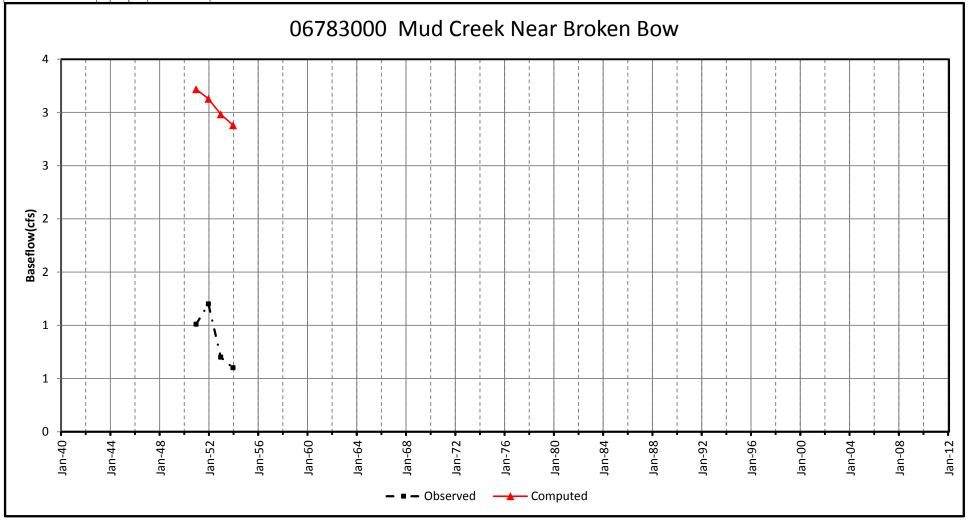


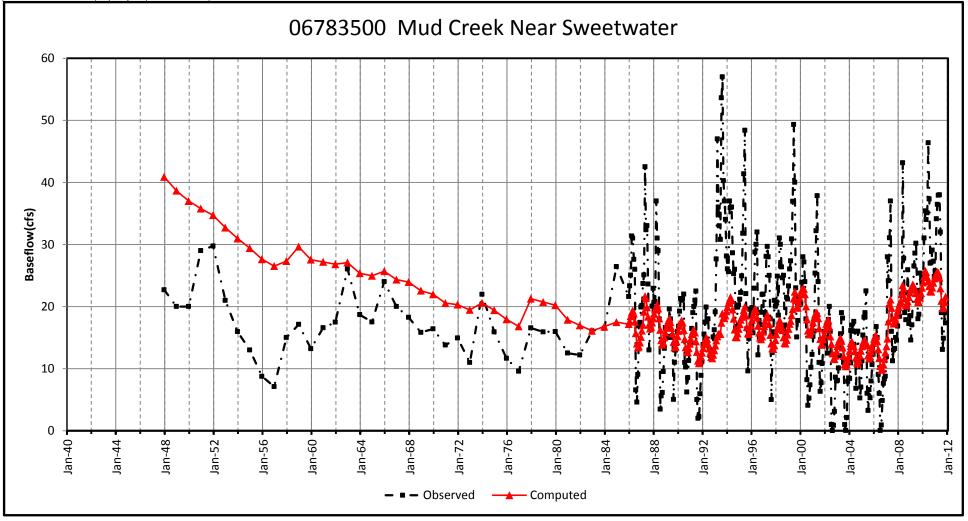


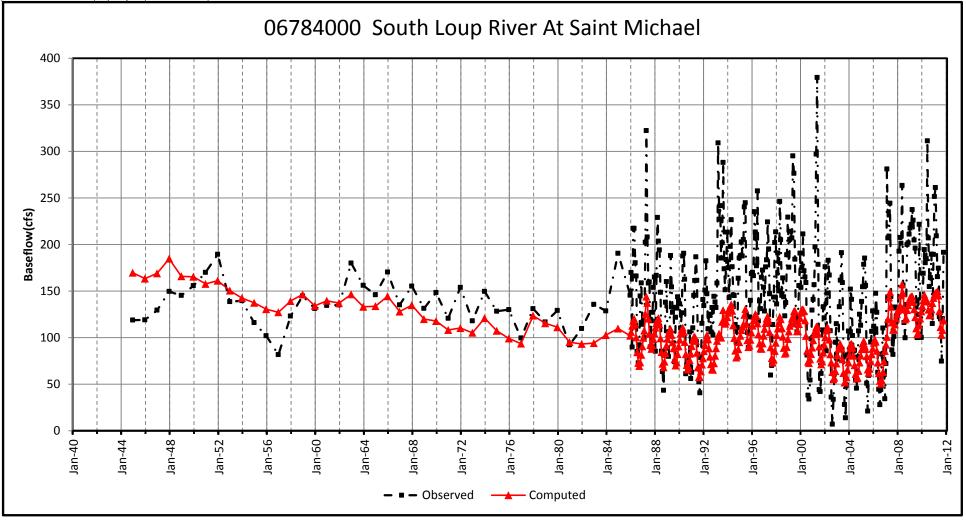


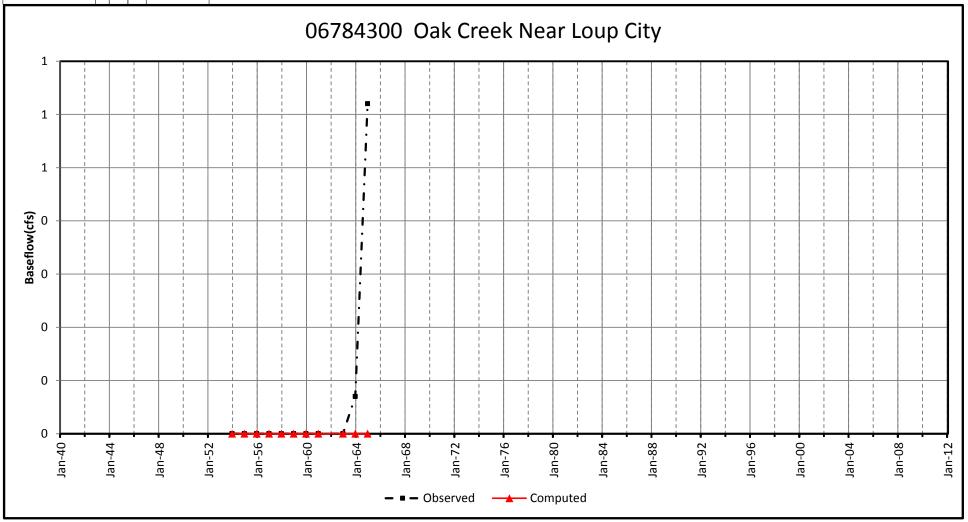


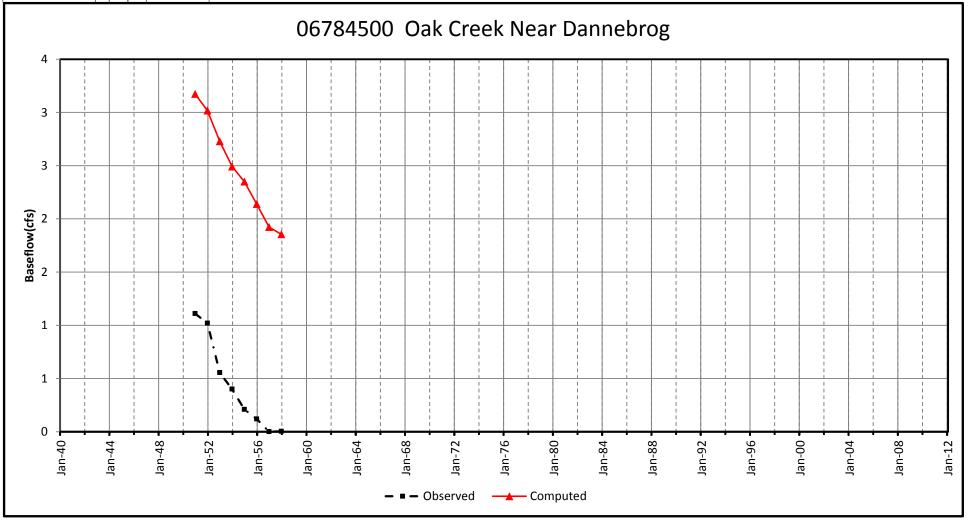


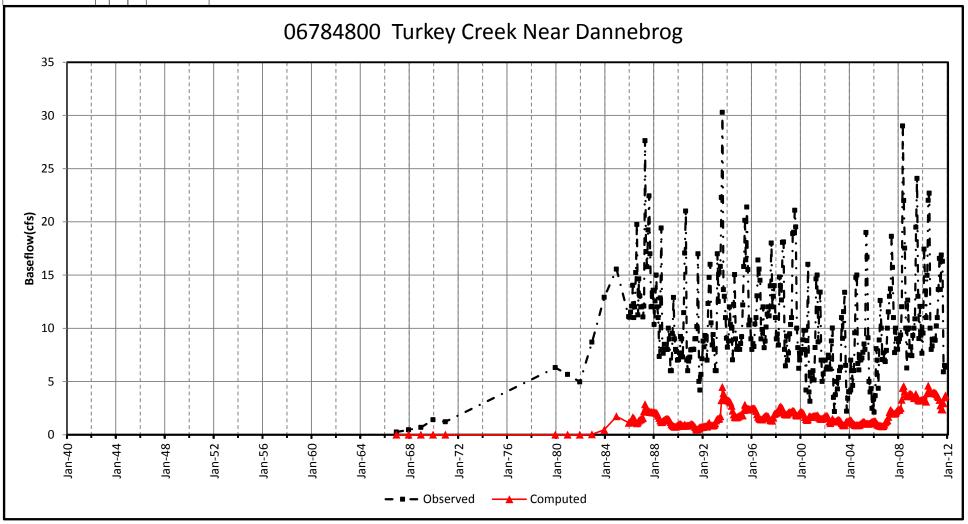


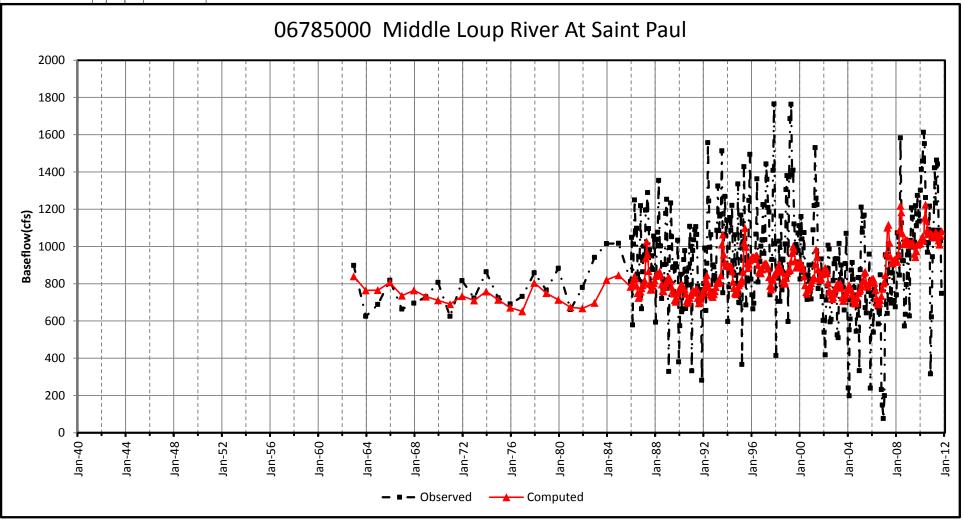


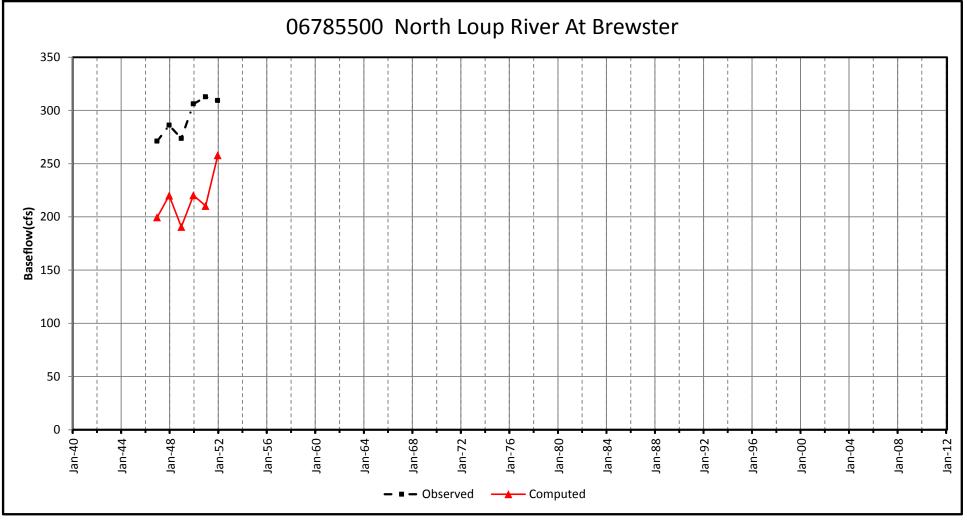


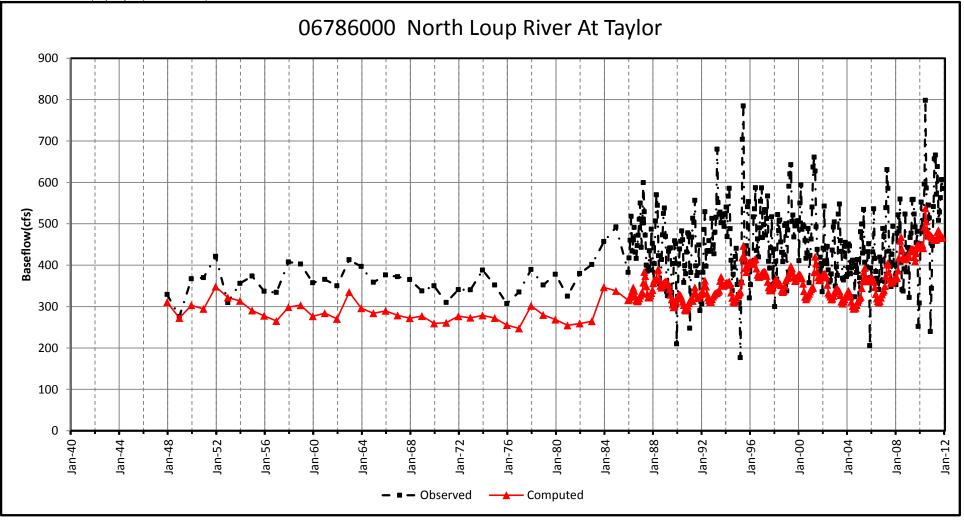


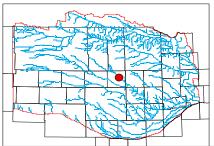


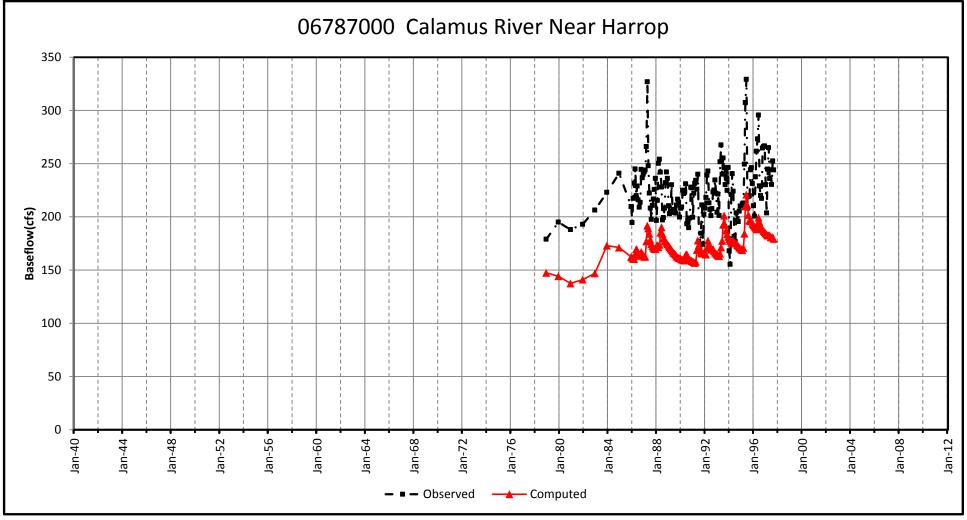


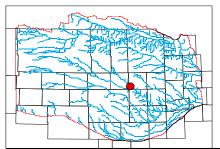


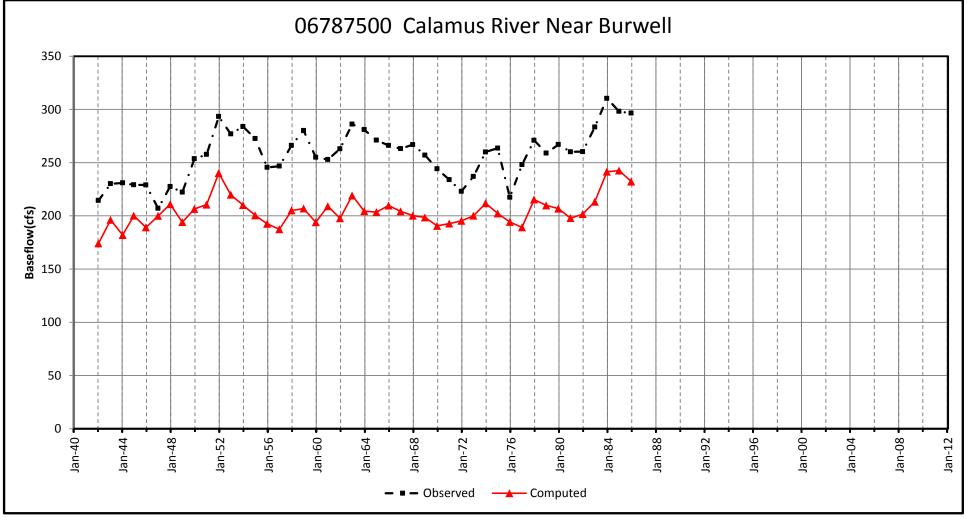


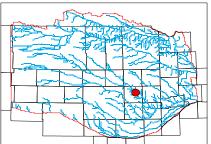


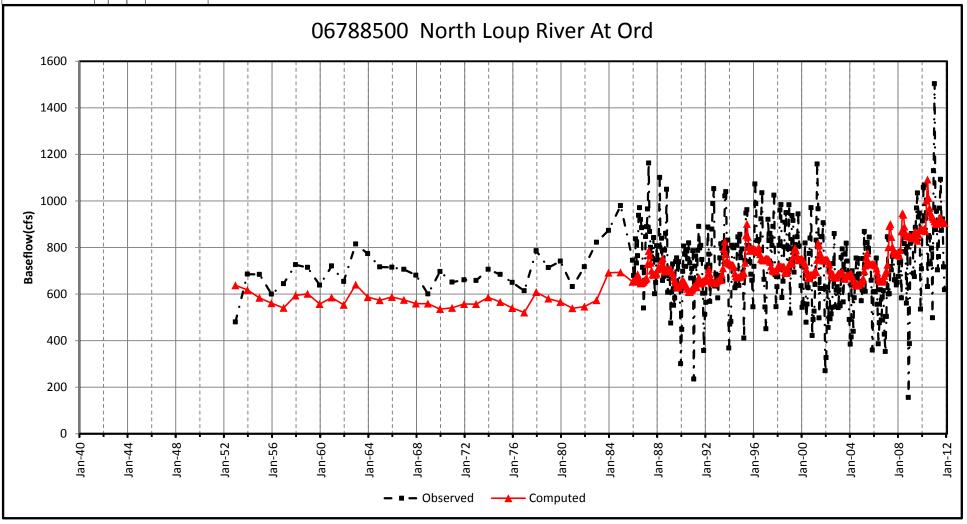


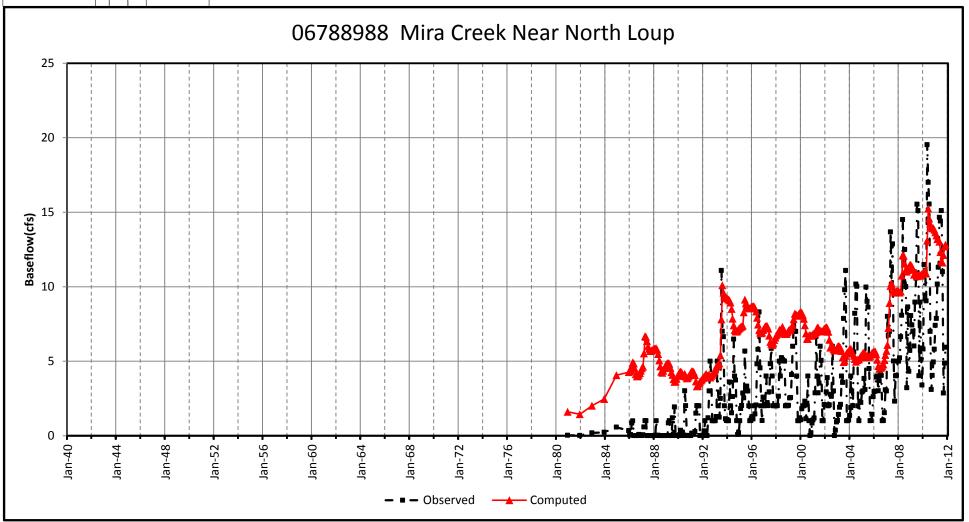


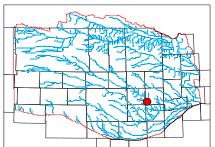


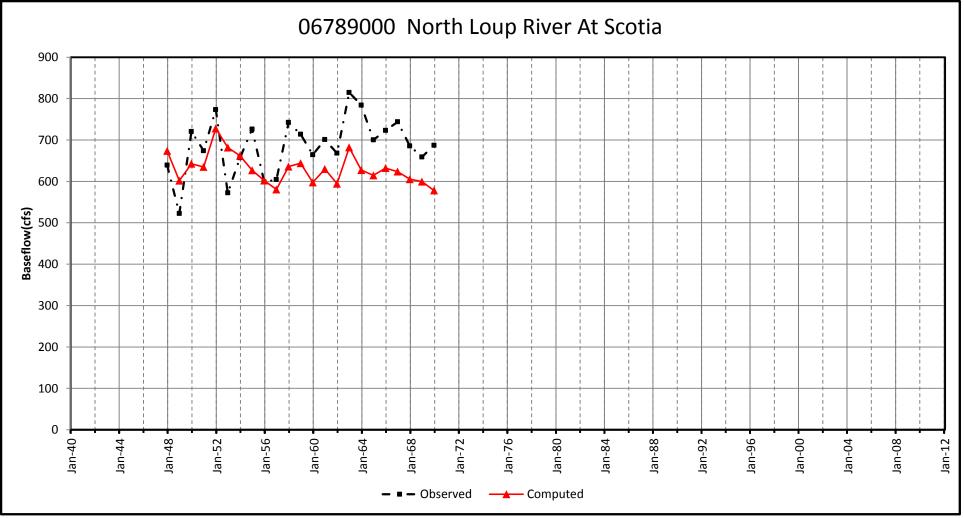


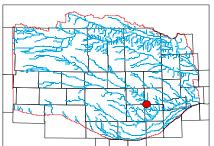


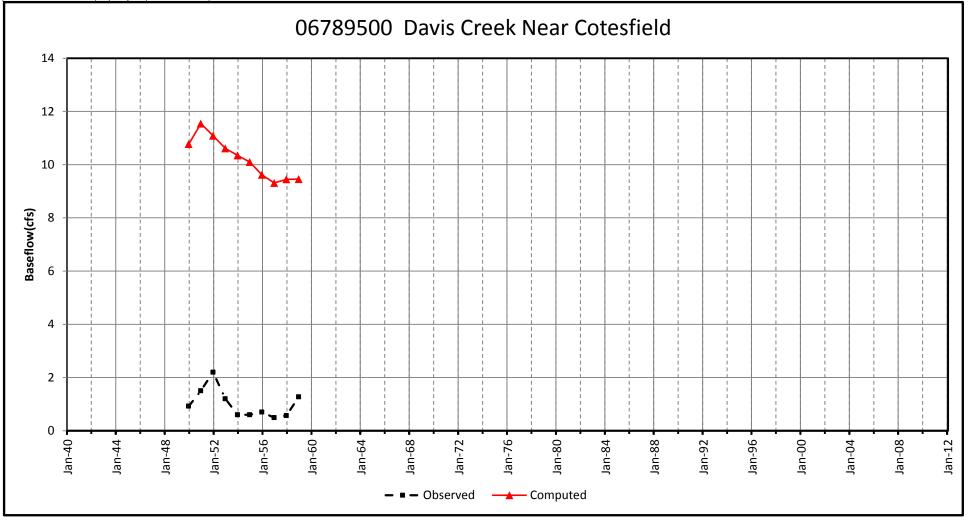


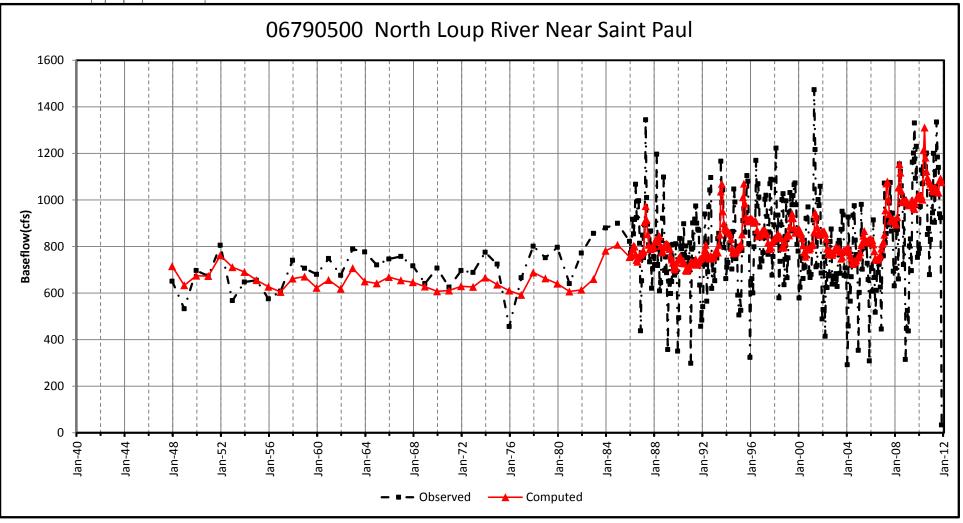


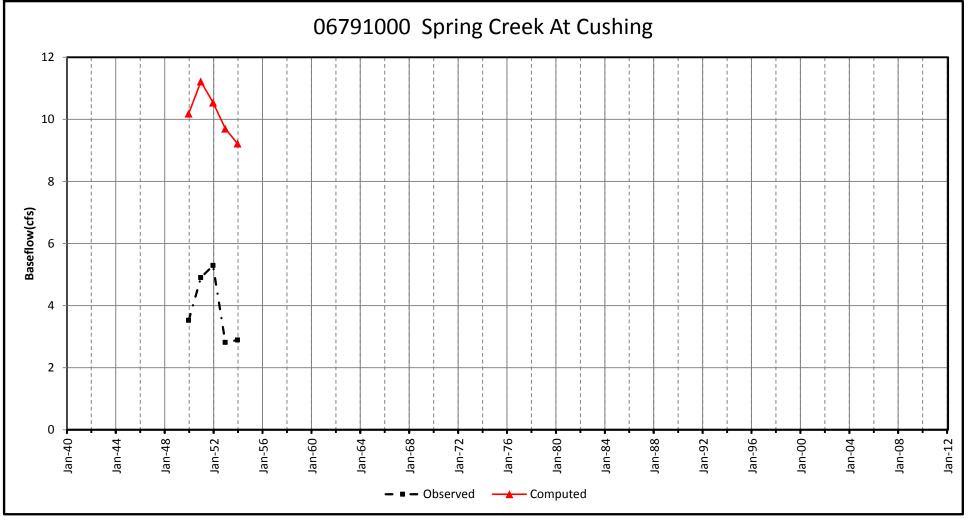


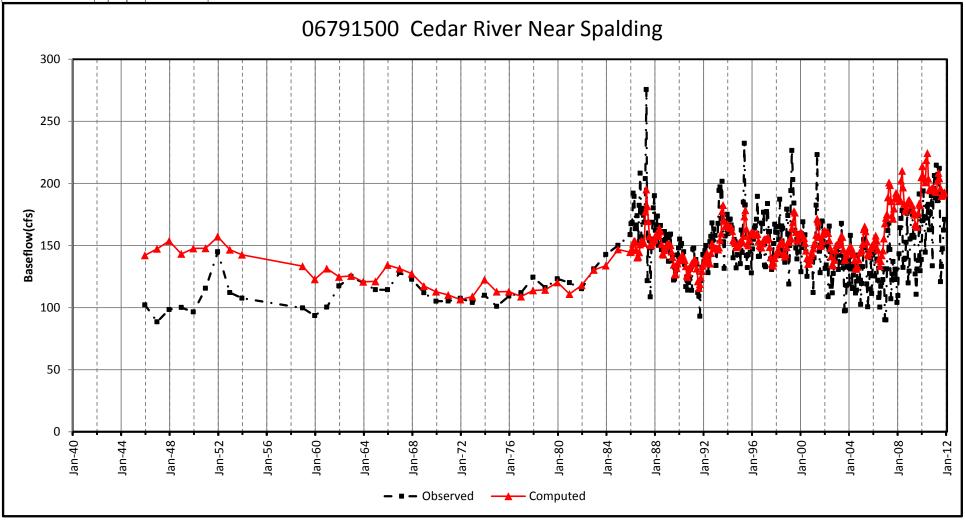


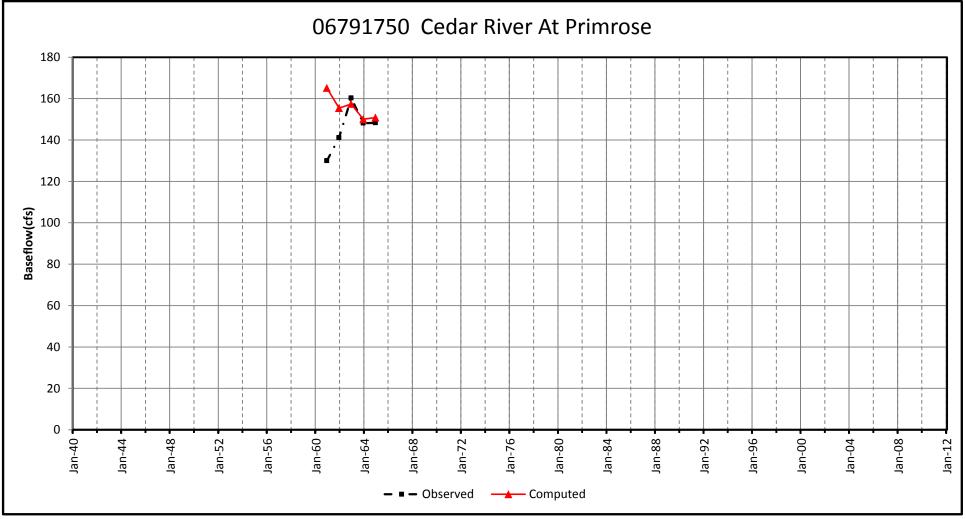


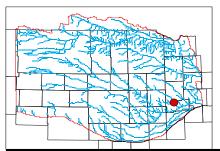


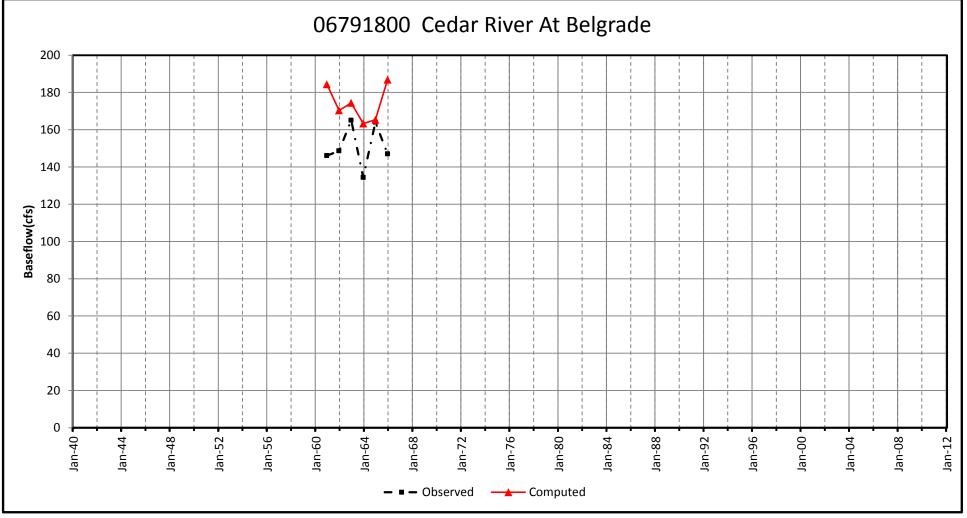


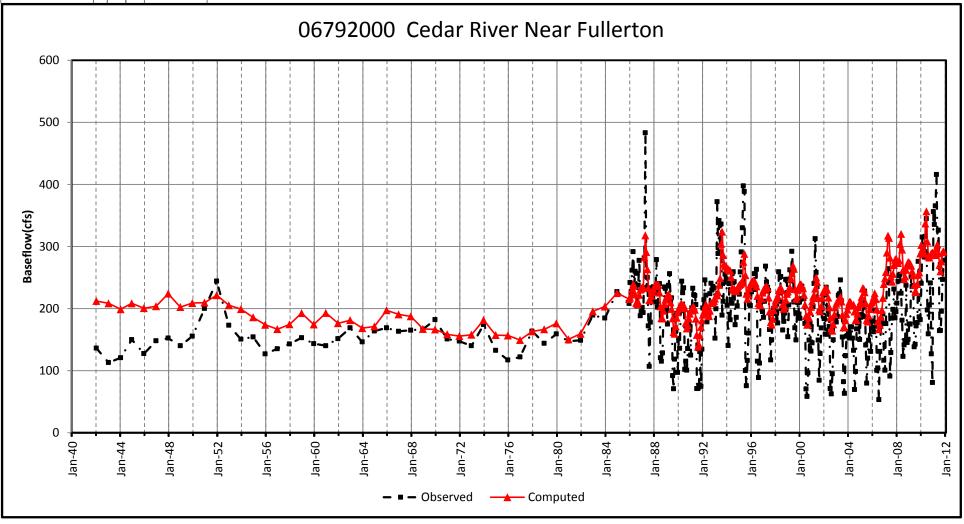


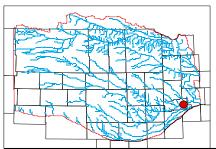


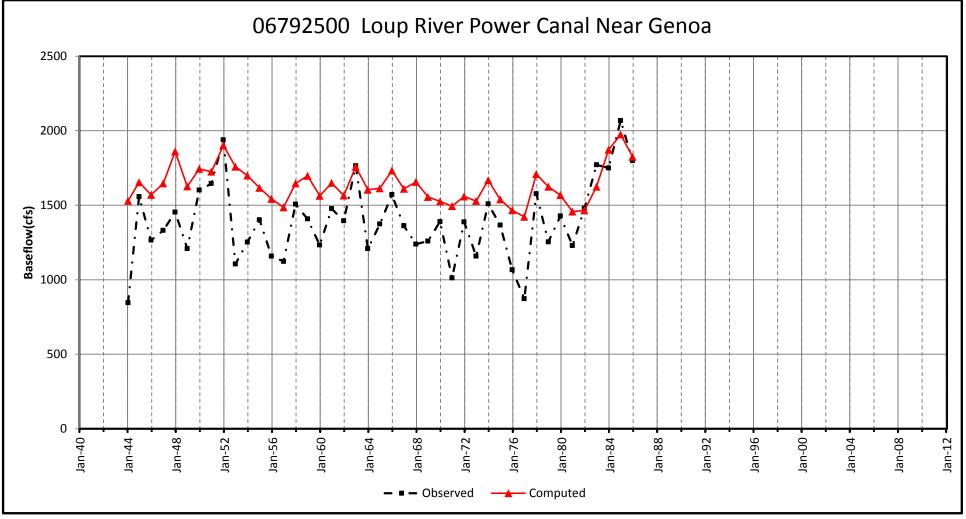


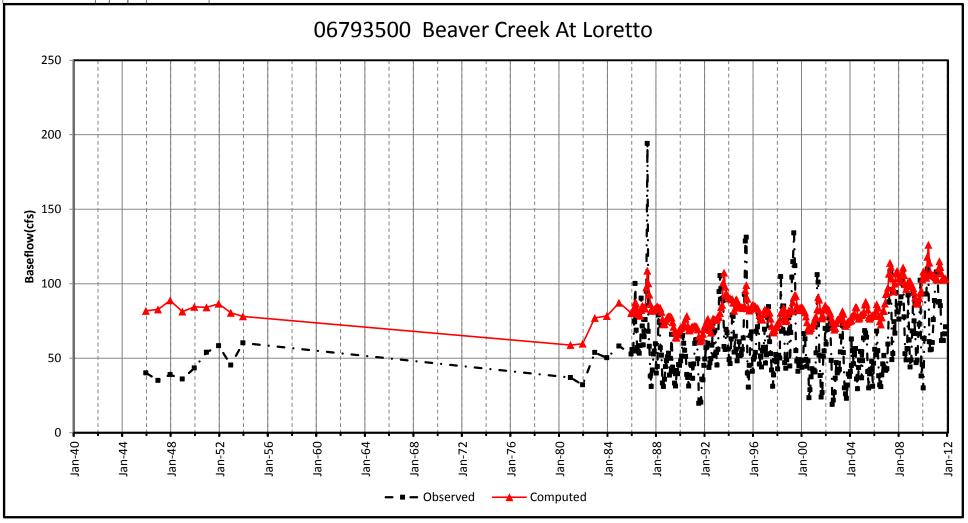


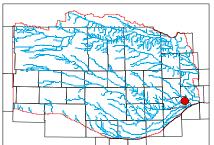


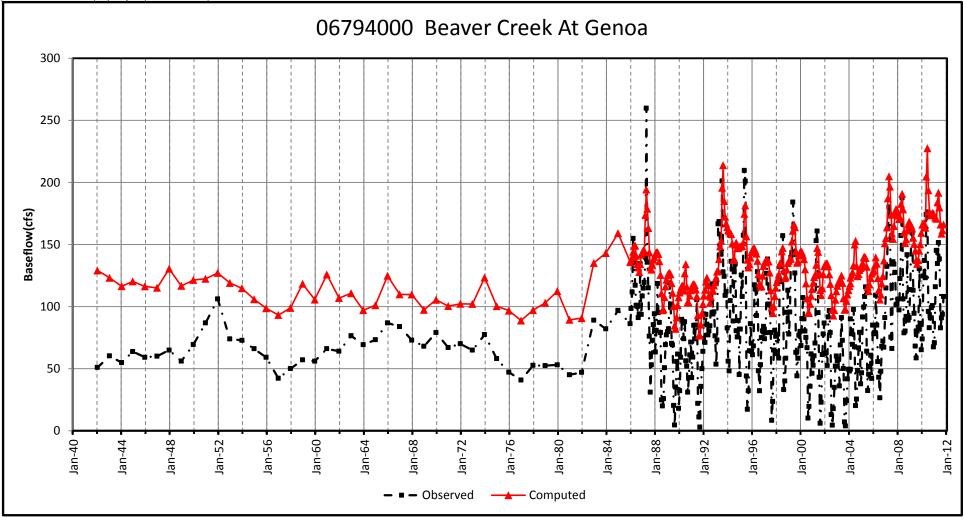


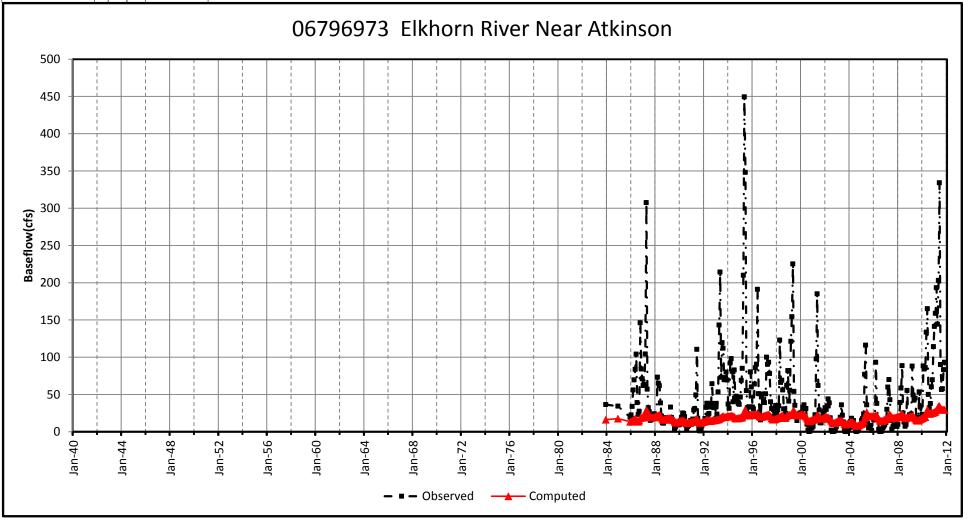


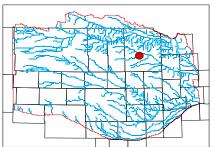


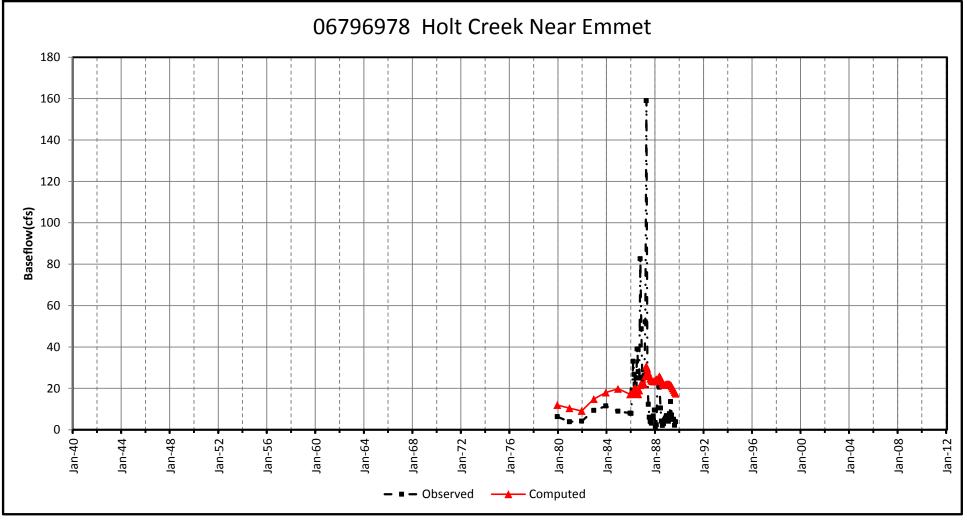


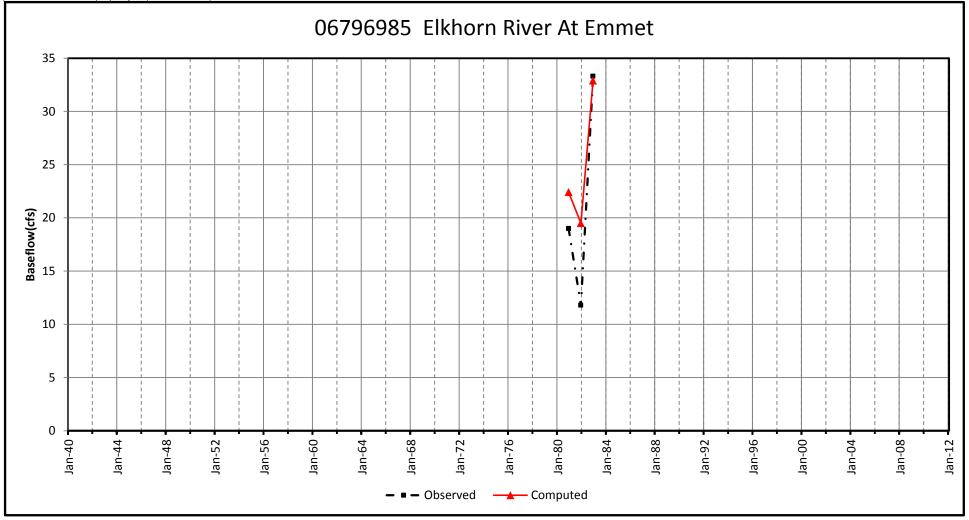


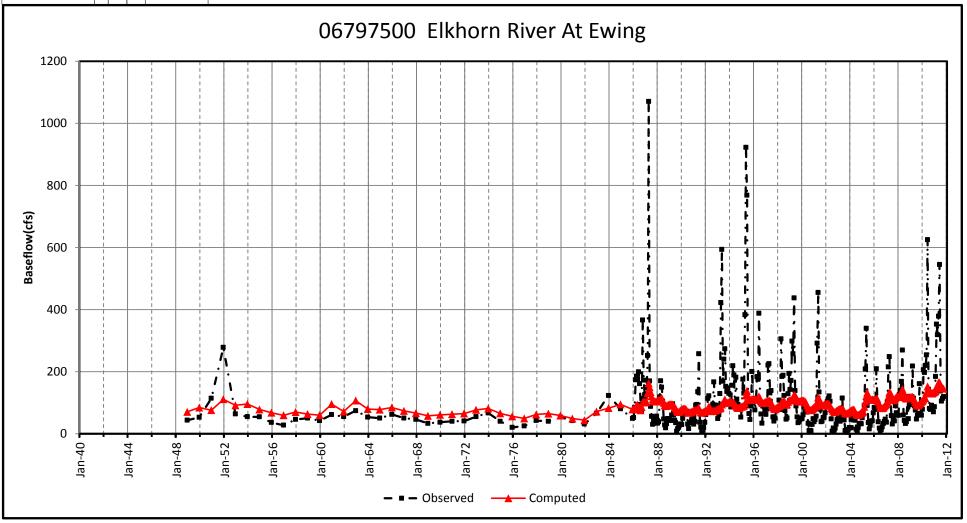


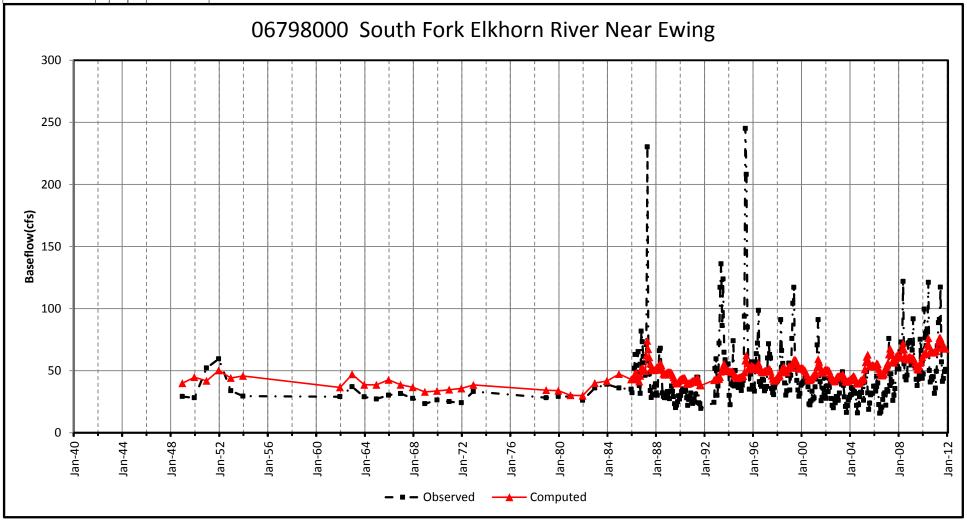


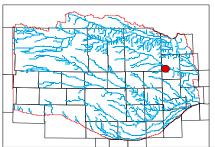


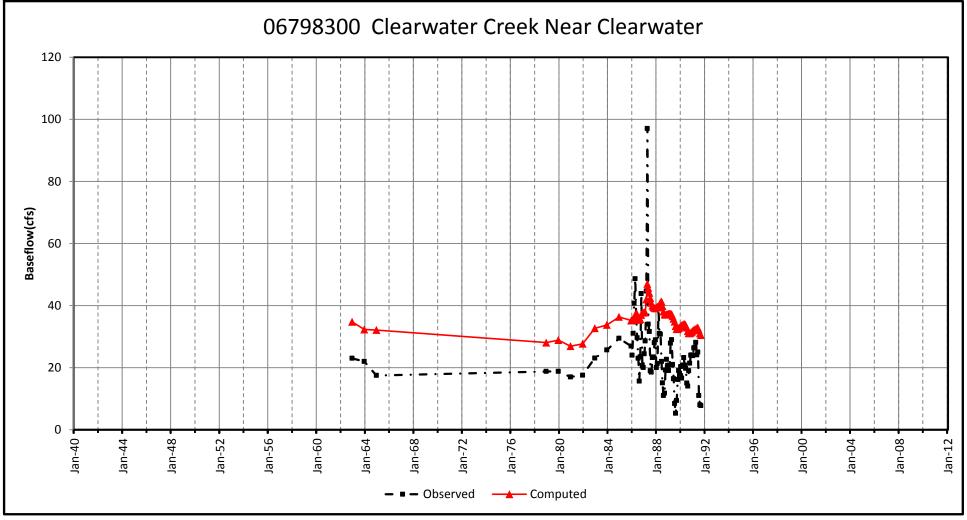


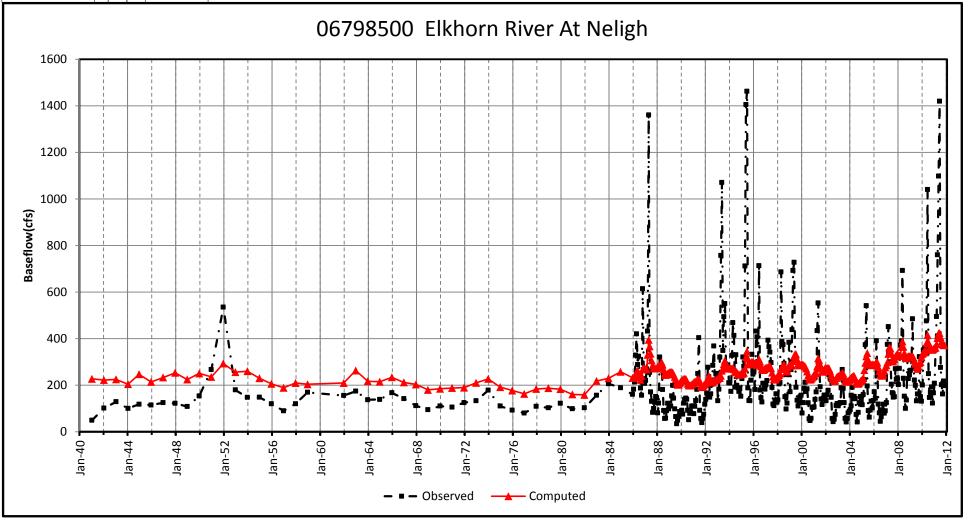


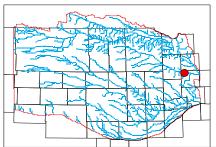


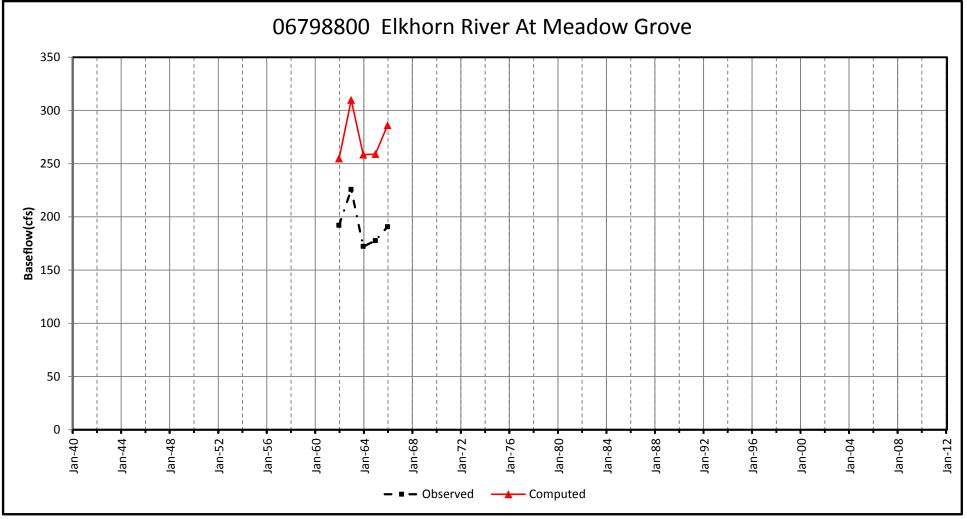


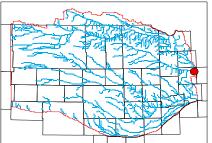


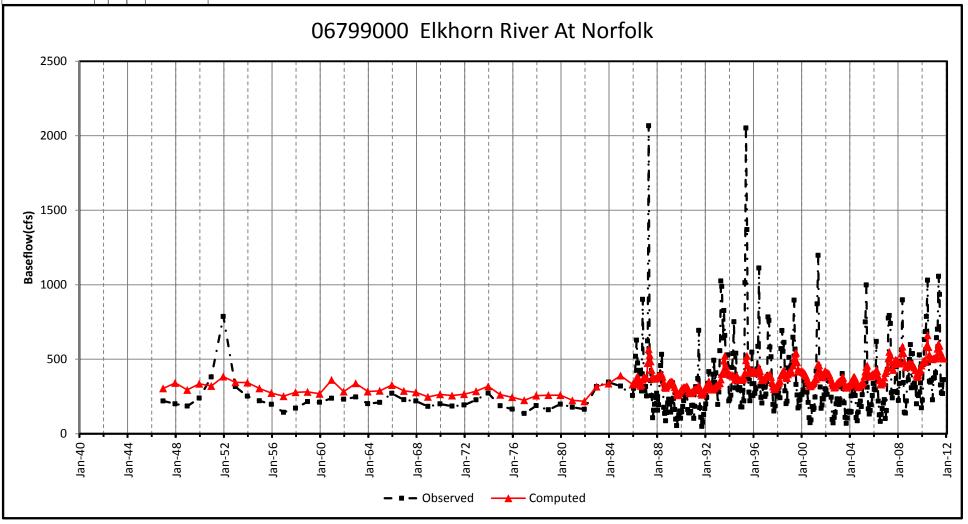


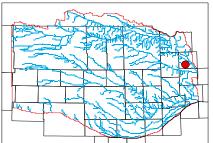


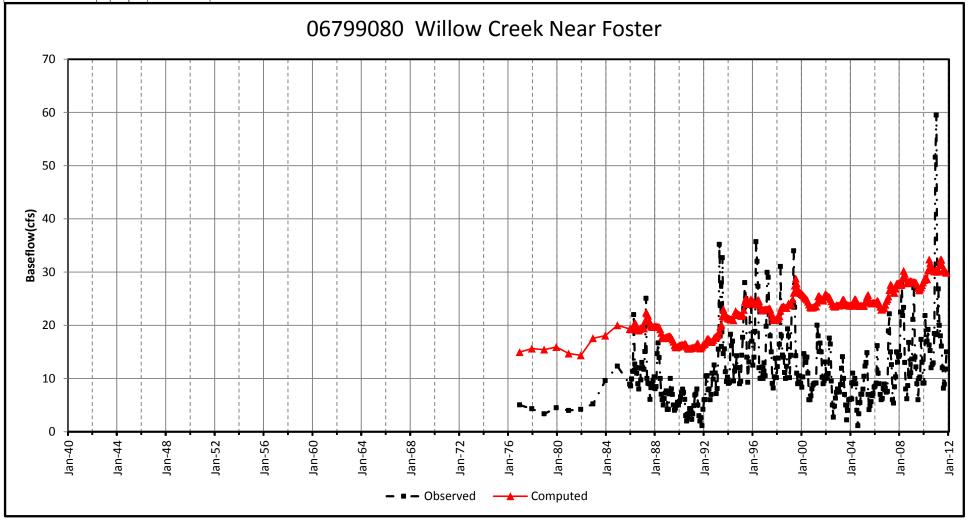


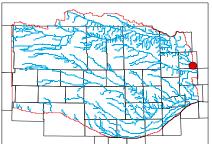


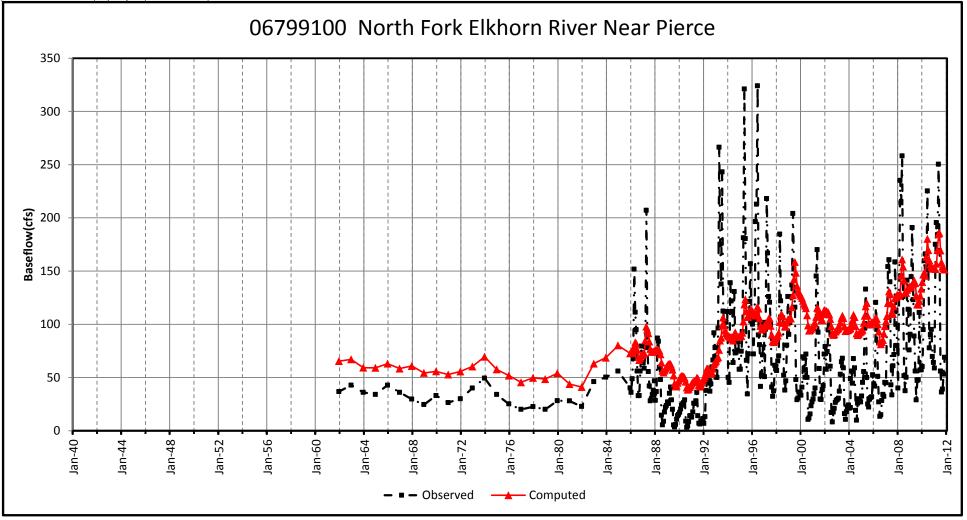




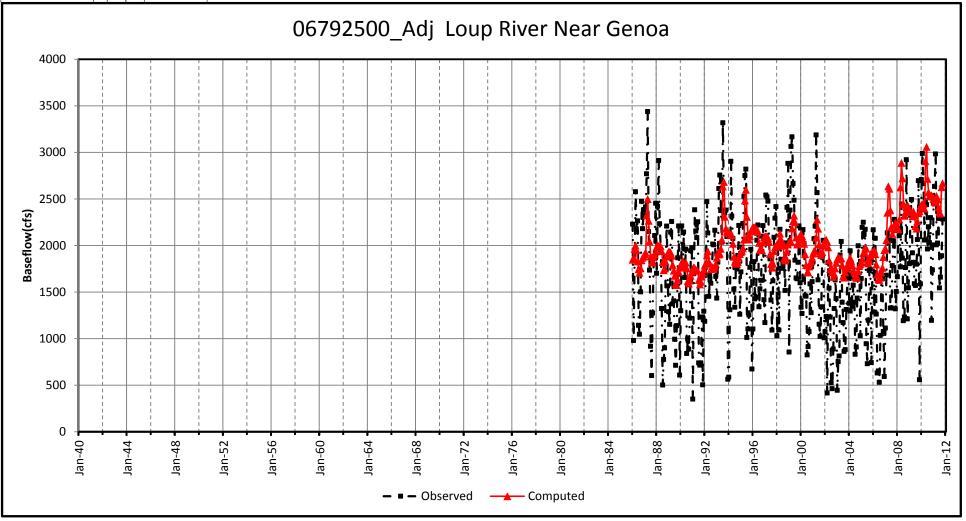












Appendix Z: Electronic Files on DVD

