Climate and Your Community

February 23, 2023

Doug Kluck Central Region Climate Services Director NOAA National Center for Environmental Information

Adele Phillips, CFM

Flood Mitigation Planner Nebraska Department of Natural Resources

DEPT. OF NATURAL RESOURCES

Doug Kluck Regional Climate Services Director NOAA's National Centers for Environmental Information

Doug.kluck@noaa.gov

816-564-2417 February 23, 2023

Agenda

- Changing Climate
- Extremes
- Impacts
- Trends/Current
- Outlooks

Science: Greenhouse Effect

The Greenhouse Effect

Energy from the sun warms Earth

Some escapes back into space

Some is held by greenhouse gases in the atmosphere

Earth is about 60°F. Without the atmosphere it would be 0°F.

The Ten Warmest Years Globally (1880–2022)

Rank 1 = Warmest Period of Record: 1880-2022	Year	Anomaly °C	Anomaly °F
1	2016	0.99	1.78
2	2020	0.98	1.76
3	2019	0.94	1.69
4	2015	0.93	1.67
5	2017	0.91	1.64
6	2022	0.86	1.55
7	2021	0.84	1.51
8	2018	0.82	1.48
9	2014	0.74	1.33
10	2010	0.72	1.30

Global Temperatures (1880 – 2022)

Global Land and Ocean

https://www.ncdc.noaa.gov/sotc/

How does the climate in 2022 rank?

2022 was the 18th warmest year on record for the U.S.

2022 was the 6th warmest year on record for the globe

2010-2022 top 10 warmest years globally since 1880

2022 global ocean heat content 6th highest on record

2015-2022 eight highest ocean heat content years

https://www.ncdc.noaa.gov/sotc/

A CHANGING PLANET MEANS CHANGING CONDITIONS

Changing Climate Conditions Contribute to Extremes

Climate scientists predicted an increase in the probability of extreme events occurring due to global warming...

CH.

 \aleph

职

 Climate change is clearly seen in comparing the new normals to the Twentieth Century averages

Annual Temperature Normals since 1901 Compared to the 20th Century Average

U.S. ANNUAL TEMPERATURE COMPARED TO 20th-CENTURY AVERAGE

https://www.climate.gov/news-features/understanding-climate/climatechange-and-1991-2020-us-climate-normals

Warm Air Holds More Water Vapor: A lot more

- Saturation vapor pressure is the total amount of pressure exerted if the air were saturated (relative humidity 100%)
 - Nearly doubles for every 10 deg C increase in temperature
 - Warm tropical air can hold 4-10 times as much vapor as cold, dry air
 - Consequently more latent heat release in storms, more precipitation

Fourth National Climate Assessment, Vol II — Impacts, Risks, and Adaptation III and online

Recent 30 years (1991-2020) compared to the past (1901-2000)

Precipitation Changes Over the Decades (1901 - 2020)

Heavy Rainfall

- Daily 20-year Return means amount of rainfall expected to occur, on average, once every 20 years
- Amounts have increased more than 0.4 inch in places (slight decrease in some places)
- Varies geographically by season

Fourth National Climate Assessment, Vol II — Impacts, Risks, and Adaptation in the United

Snowfall: Increases in total snowfall amounts in the Northern Plains but increases in the proportion of precipitation falling as rain

Change in Total Snowfall in the Contiguous 48 States, 1930–2007

Data source: Kunkel, K.E., M. Palecki, L. Ensor, K.G. Hubbard, D. Robinson, K. Redmond, and D. Easterling. 2009. Trends in twentieth-century U.S. snowfall using a quality-controlled dataset. J. Atmos. Ocean. Tech. 26:33–44.

For more information, visit U.S. EPA's "Climate Change Indicators in the United States" at www.epa.gov/climate-indicators.

Change in Snow-to-Precipitation Ratio in the Contiguous 48 States, 1949–2020

Data source: NOAA (National Oceanic and Atmospheric Administration). 2021. National Centers for Environmental Information. Accessed February 2021. www.ncdc.noaa.gov.

For more information, visit U.S. EPA's "Climate Change Indicators in the United States" at www.epa.gov/climate-indicators.

Extremes...

18

More frequent & more severe extreme events. Communities & businesses are feeling the impacts.

The total cost of these 341 events exceeds \$2.475 trillion

U.S. Disaster Trends

ated: January 10, 2023

Event statistics are added according to the date on which they ended.

U.S. billion-dollar disasters since 1980 both number & costs have quadrupled.*

*Adjusted for inflation

Source: NOAA NCEI

\$85 billion

2022 Billion \$ Disasters

https://www.ncei.noaa.gov/access/billions/

NE Disaster Trends

https://www.ncei.noaa.gov/access/billions/time-series/NE

Nebraska Disasters by Month

Updated: January 10, 2023

Total Impacts By Disaster Type (NE)

https://www.ncei.noaa.gov/access/billions/summary-stats

Billion-dollar events to affect Nebraska from 1980 to 2022 (CPI-Adjusted)

Disaster Type	Events	Events/Year	Percent Frequency	equency Total Costs Percent of Total Costs	
Drought <	11	0.3	20.0%	\$10.0B-\$20.0B	46.4%
Flooding	5	0.1	9.1%	\$2.0B-\$5.0B	15.0%
Freeze	2	0.0	3.6%	\$5M-\$100M	0.2%
Severe Storm	35	0.8	63.6%	\$10.0B-\$20.0B	38.2%
Tropical Cyclone					
Wildfire	1	0.0	1.8%	\$5M-\$100M	0.2%
Winter Storm	1	0.0	1.8%	\$0M-\$0M [‡]	0.0% [‡]
All Disasters	55	1.3	100.0%	\$20.0B-\$50.0B [‡]	100.0 % [‡]

Disaster Cost and Frequency

Interactive U.S. county hazard risk maps

- NCEI worked with & expanded upon FEMA's NRI (National Risk Index) team to enhance the NOAA Billion-dollar disaster website producing 127 new, interactive U.S. county hazard risk maps for any combination of county-level hazard risk for: hurricanes, severe storms (tornado, hail, damaging winds), inland/urban flooding, drought/heat wave, wildfire, winter storms and freeze/cold wave events.
- Importantly, these maps offer more granular information in relation to exposure, vulnerability and resilience to weather & climate hazards, at a county scale.
- These new hazard combination maps are useful as we see more focus on <u>cascading</u> <u>hazard impacts</u>

For example: drought-enhanced wildfires produce mountainside burn scars, which often enhance debris flows from flooding. This is a compound hazard with cascading impacts that we see in California.

NE Risk and Vulnerability

Risk and Vulnerability by County/Tract (Harlan County)

Socioeconomic Vulnerabilities	Census Tract 9642	Harlan County	Nebraska	U.S.
Below Poverty (% of Population)	11.20%	11.20%		
Income (Per Capita Income)	\$27,421.00	\$27,421.00	\$	\$
No High School Diploma (% of Population)	9.90%	9.90%		
Age 65+ (% of Population)	25.00%	25.00%		
Age < 18 (% of Population)	22.50%	22.50%		
Disabled Population (% of Population)	16.30%	16.30%		
Single Parent Households (% of Population)	3.90%	3.90%		
Minority Population (% of Population)	6.10%	6.10%		
Limited English (% of Population)	0.40%	0.40%		
Mobile Homes (% of Homes)	22.90%	22.90%		
No Vehicle (% of Households)	1.80%	1.80%		
Energy Expenditures (% Change)		10.24%	9.01%	9.24%
High-Risk Labor (% Change)		-1.50%	-1.58%	-1.51%
Coastal Storm Damage (% County GDP)				0.29%
Total Damage (% County GDP)		2.54%	2.06%	4.57%

https://www.ncei.noaa.gov/access/billions/mapping

Impacts

dis litero

Current and Potential Impacts

- Health (smoke, heat, allergies, invasive diseases)
- Water (quantity, quality)
- Drought/Flood (flash, urban/rural issues, energy production)
- Cascading issues (e.g. migration, supply chains)
- Infrastructure (transportation, utilities etc..)
- Rural (Ag. implications, heat health)
- Ecosystems (loss of habitat, restorative ability, balance)
- Equity: Vulnerable populations especially vulnerable to small "disasters" or series of events
 - Place based vulnerabilities (flood plain, etc...)

Record-Setting Wildfire Season

Over 10 million acres burned, California and Colorado were scorched

Extreme events tend to cause multi-stressor situations

Sectors are interacting & interdependent through physical, social, institutional, environmental, and economic linkages.

These sectors and the interactions among them are affected by a range of climate-related and non-climate influences.

Example

- 1. Wildfire chars California hillside
- 2. Atmospheric river dumps heavy rain
- 3. Rainfall causes a landslide
- 4. Landslide cuts off roadways
- 5. Services and economic activity are disrupted

Increases in heat-related deaths are projected To outweigh reductions in cold-related deaths.

Temperature Projections

Projected Temperature Change by 2050

- Annual temperatures are expected to increase by 5-6°F
- Winter and Spring to experience the largest increases
- The frequency and intensity of heat spells are projected to increase throughout the 21st century while those for cold spells are projected to decrease
- Risk of frost damage to vegetation may not change substantially

Data: 28 CMIP5 GCMs under a medium emissions scenario (RCP 4.5)

Precipitation Projections

Projected Precipitation Change by 2050

- Annual precipitation is expected to increase with largest increases in spring and winter
- Plausible decreases in summer precipitation by as much as -10%. Less agreement across models for precipitation changes in summer and fall
- High confidence that future storms and precipitation events will be more extreme

Data: 28 CMIP5 GCMs under a medium emissions scenario (RCP 4.5)

Aridification & Drought

Atmospheric Thirst is Increasing!!!

Figure showing changes in atmospheric thirst, measured in terms of reference evapotranspiration (mm), from 1980-2020. The largest changes are centered over the Rio Grande region of the southwestern U.S. Credit: DRI.

Water available on the land is a difference between precipitation and evapotranspiration

Increased Risk of Flash Droughts

Droughts are found to be developing (drought onset) at a faster rate [globally] in recent decades (Qing and others, 2022)

Fig. 11.6: Cascading Consequences of Heavy Rainfall for Urban Systems

With heavy downpours increasing nationally, urban areas experience costly impacts. (top) In cities with combined sewer systems, storm water runoff flows into pipes containing sewage from homes and industrial wastewater. Intense rainfall can overwhelm the system so untreated wastewater overflows into rivers. Overflows are a water pollution concern and increase risk of exposure to waterborne diseases. (bottom) Intense rainfall can also result in localized flooding. Closed roads and disrupted mass transit prevent residents from going to work or school and first responders from reaching those in need. Home and commercial property owners may need to make costly repairs, and businesses may lose revenue. Source: EPA.

Fig. 14.2: Vulnerable Populations

Examples of populations at higher risk of exposure to adverse climate-related health threats are shown along with adaptation measures that can help address disproportionate impacts. When considering the full range of threats from climate change as well as other environmental exposures, these groups are among the most exposed, most sensitive, and have the least individual and community resources to prepare for and respond to health threats. White text indicates the risks faced by those communities, while dark text indicates actions that can be taken to reduce those risks. *Source: EPA.*

Free, authoritative online sources of information about climate change, impacts, and projections.

For More "Real-time Climate" Information

- Monthly North Central U.S. Climate Summary and Outlook Webinar Series
 - 3rd Thursday of each month
- Quarterly Climate Summary and Outlook
 Midwest, Great Lakes, Missouri Basin states
- Regional Climate Services email list: <u>doug.kluck@noaa.gov</u>

Climate Mapping For Resilience And Adaptation (CMRA)

	For Resilience and Adaptation VI.1.0	<u>Cimka</u>	User Guide Get Complete Report
ancaster County, NE			of Population in Disadvantaged Communities Ottumwa
elect a geography: Cen	us Tract County Tribal Land		X Building Code: Resistant
	Kostopy		+
	Hastings		-
Climate Projections	Map Exploration	Nebraska Game & Parks Commission, Esri, HERE, Garmin, F	AO, NOAA, USGS, EPA, NPS E₅ri, USGS Powered by
Climate Hazards	Climate Projections for Early Century (2015–2044) Cower emissions	Higher emissions	Chart Table
Extreme Heat	Annual days with maximum temperature > 90°F 58.5 Days + 21.7 since 1976-20	61.5 Days + 24.7 since 1976-2005 140	ו temperature > 90°F
Drought	Annual days with maximum temperature > 95°F 28.1 Days + 14.3 since 1976-20	30.9 Days 105 + 17.2 since 1976-2005 100	
Wildfire	Annual days with maximum temperature > 100°F 9.4 Days + 6.3 since 1976-200	11.2 Days 05 + 8.0 since 1976-2005 60	
Flooding	Annual days with maximum temperature > 105°F 1.8 Days +1.5 since 1976-200	2.4 Days 25 + 2.1 since 1976-2005	
Coastal Inundation	Annual single highest maximum temperature 104.9 °F +3.3 since 1976-200	105.4 °F 105.4 °F Modeled History Early Ca Modeled History Modeled History	entury Mid Century Late Century (1976-2005) Lower emissions Higher emissions
	Annual highest maximum temperature averaged over a 5-day $99.7 _{\rm F}$	100.3 °F	

http://resilience.climate.gov

Climate Mapping For Resilience and Adaptation v1.1.0

CMRA User Guide

5-page reports are .html files that can be bookmarked, shared, or printed

Climate.gov, Drought.gov, Weather.gov, Heat.gov

Climate Resilience Toolkit: https://toolkit.climate.gov/

U.S. Global Change Research Program (USGCRP)

Volume II Impacts, Risks, and Adaptation in the United States

science2017.globalchange.gov

globalchange.gov/nca4

National Climate Assessment 5.0 due by the end of 2023

Local Trends, Current Conditions and Outlooks

January 2023 Rankings

2022 Precipitation

Nebraska Temperature Trends

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/

Nebraska Average Temperature

Panhandle: +2.2F/Century Southeast: +1.3F/Century

Nebraska Precipitation Trends

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/

Southeast: +1.36" Panhandle: +0.14

Have precipitation increases been able to keep up with rising temperatures?

Precipitation % of Normal and deficit: Last 3, 2 and 1 years

https://hprcc.unl.edu/maps.php?map=ACISClimateMaps

22 Years of Drought: Nebraska

Nebraska Percent Area in U.S. Drought Monitor Categories

https://hprcc.unl.edu/maps.php?map=ACISClimateMaps

https://www.wcc.nrcs.usda.gov/ftpref/data/water/wcs/gis/maps/west_swepctnormal_update.pdf

Mountain Snowpack

58

(snow water equivalent % of normal)

Plains Snowpack (snow water equivalent) (February 22, 2023)

59

http://www.nohrsc.noaa.gov

NOAA

https://weather.msfc.nasa.gov/sport/case_studies/lis_CONUS.html

Total Precipitation Outlook Through 3/2/23

61

Week 2 Temperature & Precipitation Outlook (March 1st – 7th, 2023)

80-90%

90-100%

80-90%

90-100%

http://www.cpc.noaa.gov/

TMENT OF

March 2023 Temperature & Precipitation Outlook

63

ATMOS

IOAA

March - May 2023 Temperature & Precipitation Outlook

64

http://www.cpc.noaa.gov/

June - August 2023 Temperature & Precipitation Outlook

IOAA

Drought Outlook through May 2023

MENT OF

https://www.cpc.ncep.noaa.gov/

Key Points

NORR COMPANY OF COMPANY

* Current Conditions

- * Current ENSO condition: La Niña transitioning to Neutral this spring then El Niño?
- * Plains snowpack decent so far
- * Mountain snowpack mainly slightly above average

* Outlook

- * Short term (week 2):
 - * Temperatures near normal
 - * Precipitation favors above normal
- * Long term:
 - * Temperatures mainly equal chances of above/below/normal
 - * Precipitation mainly equal chances

Next monthly North Central Climate Summary & Outlook Webinar, March 16, 2023 https://attendee.gotowebinar.com/register/98150532442280278

"I mean, what if we just come out and say that we have no idea what the weather will be?"

What Can We Do About It?

Mitigation

Reducing greenhouse gas emissions &/or removing carbon dioxide from the atmosphere can lessen the severity of climate change & its impacts.

Improving our ability to cope with or avoid harmful impacts; or taking advantage of newly favorable conditions. Reducing risk and vulnerability, and exploiting opportunities.

Mitigation: reducing CO₂ in the atmosphere

- Develop new habits to avoid wasting energy
- Switch to carbon-free energy sources, such as solar & wind
- Plant trees to increase the amount of CO₂ taken up by forests & to reduce severity of 'urban heat islands'
- Establish a carbon tax /dividend to build the cost to pollute into the economy
- Pay ag. for conservation

handle sea level rise and flooding

Adaptation: Anticipating & adjusting to new conditions

- Install green roofs or reflective roofs
- Develop infrastructure to manage water extremes
- Plant different crops
- Develop new business models
- Make assets & supply chains more resilient

Thank You

Doug.kluck@noaa.gov

www.ncei.noaa.gov

NCEI Climate Facebook: <u>http://www.facebook.com/NOAANCEIclimate</u> NCEI Ocean & Geophysics Facebook: <u>http://www.facebook.com/NOAANCEIoceangeo</u> NCEI Climate Twitter (@NOAANCEIclimate): <u>http://www.twitter.com/NOAANCEIclimate</u> NCEI Ocean & Geophysics Twitter (@NOAANCEIocngeo): <u>http://www.twitter.com/NOAANCEIocngeo</u>